
REDUCED COMMUNICATION FOR DISTRIBUTED

TRANSACTIONS THROUGH TIME-DEPENDENT

GUARANTEES

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Thomas Robert Magrino

August 2019

© 2019 Thomas Robert Magrino

ALL RIGHTS RESERVED

REDUCED COMMUNICATION FOR DISTRIBUTED TRANSACTIONS

THROUGH TIME-DEPENDENT GUARANTEES

Thomas Robert Magrino, Ph.D.

Cornell University 2019

Modern software is highly concurrent, with many operations contending for shared

information stored across large geographic distances. The systems on which these

applications are written must provide a well-defined semantics that is easy to

understand so that programmers can ensure their software is correct. Strictly se-

rializable transactions provide a particularly simple interface for writing code in a

concurrent setting, but they come at a cost: implementations require commit pro-

tocols to resolve contention between potentially conflicting transactions, sometimes

coordinating across distant nodes.

This dissertation explores warranties, time-dependent guarantees on the sys-

tem’s state, which improve the performance of distributed transaction systems by

avoiding synchronous communication. Warranties guarantee that a predicate over

the system’s state and the current time holds until an associated expiration time.

These predicates can express a wide variety of checks performed by applications

ranging from simple comparisons to complex application-specific logic. Warranties

can be constructed compositionally, using other warranties as evidence that a more

complex predicate holds. Furthermore, these predicates can be time-varying, ex-

pressing guarantees about trends on the system’s state. While holding an active

warranty, nodes do not need to perform synchronous communication to validate

the associated assertion.

The system enforces an active warranty by delaying updates that falsify the

guarantees until the warranty is safely retracted or expires. To ensure the benefits

of warranties outweigh delays to updates, the system uses a cost model to deter-

mine a warranty’s expiration time and to select other simpler warranties that help

enforce a warranty with low overhead. Using a variety of benchmarks and real-

world applications, warranties are shown to significantly improve the performance

of distributed transaction systems.

BIOGRAPHICAL SKETCH

Tom Magrino was born in San Diego, CA in 1990 to Tom and Kathy Magrino.

Outside of a few initial years moving around due to his father’s career in the Navy,

he spent his childhood there with his two younger siblings Nicole and Alex. All

three Magrino children probably never understood how lucky they were to enjoy

the perfect sunny weather of San Diego.

Tom’s family moved to Davis, CA in 2004, right before he started high school.

In his high school chemistry class, Tom met a friend who first introduced him to

programming. He was immediately enthralled with the practice of programming

and had long been fond of the notion of engineering, leading him to join the high

school FIRST robotics team (team 1678) where he had his first experiences with

working on long term collaborative technical projects.

After graduating from high school in 2008, Tom went on to study electrical

engineering and computer science at University of California, Berkeley. At UC

Berkeley, Tom was encouraged by his peers to participate in academic research,

which he found challenging and fulfilling. Those undergraduate research experi-

ences convinced Tom he would be happiest pursuing a PhD after graduating in

spring of 2012, leading him to Cornell University the following fall.

After his first year at Cornell, Tom met his wife, Marin Cherry, whom he

married in 2017. They have shared countless adventures together over the years.

Tom and Marin care for two cats, Shakira and Otto, who have provided great

emotional support to both of their humans while living in Ithaca, NY.

iii

For my family, Tom, Kathy, Nicole, and Alex, who taught me to dream big.

For my wife, Marin, who helps me turn those dreams into reality.

iv

ACKNOWLEDGMENTS

While pursuing a PhD has the potential to be an uniquely isolating experience

at times—long hours working away at experiments, reading papers, and staring

at whiteboards thinking deep thoughts—it is often a fundamentally communal

experience. I would not have gotten to this point without the amazing help of

many, many people. I hope I’m not forgetting any names here.

First, I would like to thank my advisor, Andrew Myers. Andrew has been a

thoughtful and patient advisor to me, even at times when I may not have been

the most thoughtful and patient student. Over the years at Cornell, Andrew has

taught me to think critically, work hard, and invest time in helping my peers. Most

of all, Andrew has taught me so much about how to communicate research, both

in writing and speaking.

Furthermore, I’d like to thank my committee members, Fred Schneider and

Dexter Kozen, for their thoughtful feedback and challenging me to be more specific

in my ideas.

The work presented in this dissertation is the product of funding from the Na-

tional Science Foundation and a National Defense Science and Engineering Grad-

uate fellowship. Furthermore, they were born out of collaborations with a number

of extremely terrific and astonishingly smart folks: Jed Liu, Owen Arden, Mike

George, Nate Foster, Johannes Gehrke, and Andrew Myers.

In particular, Jed taught me so, so much about how to conduct research as

a PhD student during our collaborations. Jed taught me how to design systems,

build systems, and—most importantly—how to debug systems. Without his help,

I’d have probably taken much longer to build and fix research software and I’d

have walked away from it with much less hair.

Ken Birman and Zhiyuan Teo taught one of my first graduate courses, Ad-

v

vanced Systems (CS6410), where I developed the earliest predecessor of computa-

tion warranties as a class project. Their early feedback on that project and their

guidance on how to read and think about systems research was a fundamental

early step to getting to where I am.

One of the greatest pleasures of being advised by Andrew Myers is being part of

the quirky and energetic Applied Programming Languages (APL) research group.

Over the course of my PhD work, APL has been home to a phenomenal band

of individuals: Jed Liu, Michael D. George, Danfeng Zhang, K. Vikram, Owen

Arden, Chinawat Isradisaikul, Yizhou Zhang, Isaac Sheff, Matthew Milano, Ethan

Cecchetti, Rolph Recto, Drew Zagieboylo, Josh Acay, and Siqiu Yao. Every week,

I had the pleasure of attending the APL group meeting where I’d get to trade

excessively bad jokes with everyone and hear about the diverse projects everyone

was working on. The group has been a tremendous source of feedback on paper

drafts and new perspectives when I needed a second opinions on research problems.

Beyond the research group, the systems lab and the Cornell CS department

have been a wonderful academic family to me. Both the lab and the department

have grown by leaps and bounds since I’ve started here and I’m astonished how it

continues to get better and better at scale.

I don’t think I’d have finished my PhD without the invaluable social and emo-

tional support of my friends. Sofia Abreu Faro and Shrutarshi Basu were wonderful

roommates in what we lovingly called the “fun house” for a year in Ithaca. I’ll al-

ways look back fondly on our time living together. Andrew Hirsch, Isaac Sheff, Josh

Moore, Hussam Abu-Libdeh, Ross Tate, Ann Tate, Jed Liu, Fabian Mühlböck,

Laure Thompson, Alex Fix, Louise Felker, Erin Chu, Alyce Daubenspeck, Eleanor

Birrell, Eston Schweickart, Ethan Cecchetti, Matthew Milano, Natacha Crooks,

and Michael Roberts all made my time in Ithaca an absolute delight.

vi

I’d also like to thank friends from home who helped support me throughout this

journey—particularly Robert Shaffer, Rohit Poddar, Franklin Dingemans, Daisy

Zhou, Kevin Ho, Aaron Wong, and Andrew Nguyen. Online gaming and conver-

sations with all of you really kept my spirits up, particularly when I was either

homesick or not feeling great about my progress in graduate school.

My family has been wonderfully supportive and loving throughout this entire

process. They ensured that I was raised to be curious, hard working, and humorous.

Finally, I know I wouldn’t have made it this far without the loving support of

my wife, Marin Cherry. Marin, thank you for being such a saint. I thank my lucky

stars everyday that you’ve been with me on this adventure.

vii

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgments . v
Table of Contents . viii
List of Tables . xi
List of Figures . xii

1 Introduction 1
1.1 Beyond Optimism . 3
1.2 Predicates to Avoid Contention . 4
1.3 Compositional Predicates for Low-Overhead Enforcement 5
1.4 Capturing Trends with Time-Varying Predicates 6
1.5 The Warranty Design Space . 6

1.5.1 Consistency . 7
1.5.2 Revocability . 7
1.5.3 Predicate Scope . 8
1.5.4 Time Dependence . 9

1.6 Dissertation Outline . 9

2 System Model 11
2.1 Strong Consistency . 11
2.2 Optimistic Concurrency Control . 13
2.3 Transactions Across Multiple Stores 14
2.4 Clock Synchronization . 15

3 Public Warranties 16
3.1 Warranties as Optimistic Concurrency Control 17
3.2 Warranties as Generalized Read Leases 18
3.3 Issuing State Warranties . 19
3.4 Distributing Public Warranties . 19
3.5 Defending Public Warranties . 21
3.6 Performance Trade-offs . 22
3.7 Setting Warranty Terms with Workload Estimation 23
3.8 Using Warranties in Transactions 25

3.8.1 The Warranty Commit Protocol 26
3.8.2 Avoiding Protocol Phases 27

3.9 Public Warranties Implementation 28
3.10 Evaluation . 29

3.10.1 Multiuser OO7 Benchmark 30
3.10.2 Course Management System 31
3.10.3 Comparing with Hibernate/HSQLDB 31
3.10.4 Experimental Setup . 32

viii

3.10.5 Results . 32
3.11 Discussion . 35

4 Computation Warranties 37
4.1 Example Applications . 39

4.1.1 Generated Web Pages . 39
4.1.2 Top N Items . 40
4.1.3 Searching for Airline Seats 41

4.2 Programming with Computation Warranties 41
4.3 Ensuring Correct Behavior Using Computation Warranties 43
4.4 Proposing and Issuing Computation Warranties 44
4.5 Using Computation Warranties . 45
4.6 Setting Computation Warranty Terms 46
4.7 Defending Computation Warranties 46

4.7.1 Incremental Revalidation . 47
4.8 Public Computation Warranties Implementation 48
4.9 Evaluation . 49

4.9.1 Top-Subscribers Benchmark 49
4.9.2 Course Management System 49
4.9.3 Results . 50

4.10 Related Work . 51
4.11 Discussion . 53

5 Predictive Treaties 55
5.1 Predictive Treaties by Example: Voting 57

5.1.1 Enforcing Predicates with Slack 58
5.1.2 Time-Dependent Treaties . 60
5.1.3 Preliminary Evaluation . 62
5.1.4 Hierarchical Treaties . 63

5.2 Predictive Treaties and Metrics . 65
5.2.1 Predictive Treaties . 65
5.2.2 Enforcing Predictive Treaties 67
5.2.3 Metrics . 69
5.2.4 A Prediction Model for Metric Updates 70
5.2.5 Expiration . 71

5.3 Using Predictive Treaties . 74
5.3.1 Programming with Treaties and Metrics 74
5.3.2 Stipulated Commit . 77

5.4 Automatically Creating Low-Coordination Treaties 80
5.4.1 Estimating Model Parameters for Metrics 80
5.4.2 Automatically Choosing an Enforcement Strategy 83

5.5 Implementation . 86
5.5.1 Integration with Distributed Transactions 86
5.5.2 Opportunistic Slack Reallocation 89

ix

5.6 Evaluation . 89
5.6.1 Voting Microbenchmark . 90
5.6.2 Distributed Top-k Monitoring 94
5.6.3 Modified TPC-C . 97
5.6.4 Discussion . 101

5.7 Related Work . 102
5.8 Discussion . 105

6 Conclusions 106
6.1 Public State Warranties . 106
6.2 Computation Warranties . 106
6.3 Predictive Treaties . 107
6.4 Future Work . 108

6.4.1 Combining Leased and Public Warranties 109
6.4.2 Fault Tolerance and Failure Recovery 109
6.4.3 Techniques for Warranty Search and Discovery 110
6.4.4 Population Statistics for Metrics 110
6.4.5 Support for Non-Numeric Metric Data 111
6.4.6 Alternative Prediction Models 112

Bibliography 113

x

LIST OF TABLES

3.1 Policy parameters for setting a warranty’s term. 24
3.2 Round trips performed during the commit protocol with Warranties

vs. traditional OCC. 27
3.3 CMS throughput and latency on various systems with public war-

ranties highlighted. 34

4.1 Top-N benchmark: maximum throughput, latency, and 95th per-
centile write delay. 50

4.2 CMS throughput with additional public computation warranties
result highlighted. 50

5.1 Mean relative error of parameter estimates for various scenarios. . . 82

xi

LIST OF FIGURES

3.1 Public warranty distribution architecture. Public warranties can
be distributed through a CDN to reduce load on stores. 20

3.2 The warranty commit protocol. 26
3.3 OO7 maximum throughput on a 2%-write workload as the number

of stores increases. 33
3.4 Effect of write percentage on OO7 maximum throughput on 3 stores

with 24 workers. 34

4.1 Update in tree of computation warranties. 47

5.1 Locally enforceable predictive treaties imply a global predicate. . . 59
5.2 Time-dependent predictive treaties and corresponding local vote

margins over time. 61
5.3 CDF of time until first synchronization under three different slack-

allocation strategies. 62
5.4 Hierarchical predictive treaties. 64
5.5 A predictive treaty falsified by time passing. 67
5.6 System state s evolves within the intersection of local predictive

treaties, enforcing global predicate φ(s). 68
5.7 Setting a treaty’s expiry based on predicted trajectory. 72
5.8 Treaty and Metric interfaces. 75
5.9 Voting example code using treaties. 76
5.10 Metrics tree created by example code. 76
5.11 Using stipulated commit to withdraw money from a sharded balance. 79
5.12 During the first step of treaty generation, subtreaty predicate tem-

plates are constructed by the derived metric based on the predicate
being asserted. 84

5.13 CDF of time until first synchronization under the three strategies
for slack allocation with varying bias. 91

5.14 CDF of time until first synchronization in the voting system under
static optimal (SO) and predictive treaty (PT) strategies for slack
allocation with 4 and 8 stations. 92

5.15 99th percentile vote and query latencies per second of 2-station
adaptivity test. 93

5.16 99th percentile vote and query latencies for four-station adaptivity
test with and without hierarchical treaties. 94

5.17 Using synchronizations to compare Babcock and Olston’s top-k al-
gorithm with using predictive treaties with four servers over 24
hours of page hits. 96

5.18 Using synchronizations to compare Babcock and Olston’s top-k al-
gorithm with using predictive treaties with 33 servers over one hour
of page hits. 96

xii

5.19 CDF of latencies for TPC-C NewOrder transactions, run on two
sharded stores with geographic round-trip latency, with 50% of or-
ders going to hot items uniformly across sites. 100

5.20 CDF of latencies for TPC-C NewOrder transactions with skewed
order distribution across two and five replicas using lazy balancing
(LB) and treaties (T). 101

xiii

CHAPTER 1

INTRODUCTION

Modern globally accessible applications are built to run in the cloud, operating

on many compute and storage nodes distributed across the globe. Cloud computing

allows applications to provide highly available, low-latency services to users across

the globe. These services have transformed the way we trade, communicate, and

learn about the world.

In this distributed setting, programmers encounter a tension between making

an application performant and keeping the application’s implementation simple.

The range of different platforms that programmers can choose among bears witness

to this tension. Systems improve performance using replication, keeping multiple

distributed copies of data, and sharding, allocating subsets of the data stored in

the system to different locations. Replication and sharding introduces a question

regarding the system or application’s consistency—how and when will operations

on data be performed by the system and later observed by other operations [100].

Strong consistency guarantees simplifies the programmer’s task of determining if

their application will behave as intended. Programmers to write their programs

without thinking about how their data is replicated and sharded—interacting with

data as though it was all on a single local machine. Weaker consistency guarantees

allow the system to deviate from this simple model.

Many systems to weaken consistency in order to achieve greater scalability.

However, strong consistency is critical when lives or money are at stake. Inconsis-

tent behavior can be frustrating, dangerous, or unacceptable in application settings

with serious impact on people’s lives—settings such as medicine, banking, politics,

and the military. Even in settings with lower stakes, users of weakly consistent

systems may be confused by applications that appear buggy. Moreover, weak con-

1

sistency can significantly complicate the job of developers who try to detect and

repair inconsistencies at the application layer. Consistency failures at the bot-

tom of a software stack can percolate up through the stack and cause mysterious

behavior at higher layers, requiring defensive programming.

Strictly serializable transactions provide a general, strongly consistent interface

for programming distributed applications [78, 90]. Transactions specify atomic

groups of operations that are all-or-nothing—either all or none of a transaction’s

effects are visible to other transactions. Strict serializability is a strong consistency

guarantee that requires that transactions behave as if they all run in a simple serial

order, one at a time, while respecting the order in which operations ran in real

time (in other words, if one operation completes before another operation begins,

the serialized behavior must reflect this ordering). This programming interface is

a powerful tool for application designers: it provides an easy-to-understand model

for the behavior of concurrent operations with arbitrary atomic operations.

Unfortunately, traditional methods for providing strictly serializable transac-

tions are centered on checking data accessed by a transaction and coordinating with

stores to ensure that data is simultaneously consistent at all sites. These checks re-

quire synchronously communicating with nodes that store this data to ensure that

the transaction’s view was consistent before it takes effect, guaranteeing that trans-

actions behave consistently. Synchronous communication for these checks takes a

long time in geodistributed settings, increasing transaction latency. Furthermore,

it requires blocking potentially conflicting concurrent operations from completing

in the meantime, reducing the overall throughput of the system.

Communication delays motivate optimistic concurrency control (OCC), a clas-

sic technique for improving performance of transactions. In OCC, the stored data

is not locked by clients before the data is used; instead, the client logs the values

2

read during computation. In distributed settings, this behavior allows clients to

use local, optimistically cached copies of the persistent data. After the transac-

tion’s computation is complete, clients contact the stores to validate the values

used were consistent before applying updates to the stored state [31, 56, 2]. Unlike

traditional pessimistic techniques which require synchronizing earlier in a transac-

tion, potentially multiple times, OCC allows transactions to batch synchronizing

operations into a single final validation message before committing.

This dissertation explores warranties, an abstraction which helps further avoid

synchronizing communication overheads in strongly consistent distributed trans-

action systems. A warranty is a time-dependent guarantee that a predicate holds

on a distributed system’s state:

predicate︷ ︸︸ ︷
φ(s, t) until

time limit︷ ︸︸ ︷
texpiry

with a predicate φ over the system’s current state s and the current time t that is

guaranteed by the system until the time texpiry. Warranty predicates can express

simple conditions, such as an object’s value matching the client’s cached copy, or

more complex, application-specific conditions, such as whether a company’s total

stock across all warehouses is sufficient to fill a customer’s order. Clients and stores

can use warranties to avoid synchronizing with remote nodes to determine if the

asserted conditions consistently hold in the system’s current state.

1.1 Beyond Optimism

The simplest form of warranty predicate is x == v, guaranteeing an object x has

value v. These state warranties, discussed in Chapter 3, allow the system to go a

step beyond optimistic caching to avoid synchronization. Clients can use warranties

guaranteeing cached values are consistent to know that their transactions were

performed with a consistent view of the system state. When the state observed

3

is guaranteed to be consistent, there is no need synchronous communication to

validate the observations. Furthermore, because the guarantee is time-limited, the

system does not need to incur overheads to change the guarantee; the system only

needs to wait until the guarantee expires.

State warranties can dramatically improve performance of a system by reducing

or, in some cases, entirely avoiding synchronization overheads. This is particularly

true in the case of high read contention, where many clients want to share the same

popular—yet mutable—data. Such cases are common in modern applications. For

example, a Twitter user’s display name is read by other users on the service much

more often than it is updated by the user.

1.2 Predicates to Avoid Contention

Some data is updated too frequently to benefit from state warranties. Fortunately,

applications often don’t care about specific values: many operations perform reads

only to compute more abstract predicates over the system’s state.

For example, in the case of a banking service, withdrawal operations only need

to check that the current available balance is greater than the amount being with-

drawn. In other words, a withdrawal does not need to read the exact value but a

more abstract read of the predicate on the system’s state balance ≥ amt. The

value of this predicate is often much more stable than the balance itself, and can

be warrantied for much longer than the underlying state.

Computation warranties, discussed in Chapter 4, generalize the benefits of state

warranties to more general predicates over the system state checked within an ap-

plication. Reading computation warranty guarantees in place of performing the

computations directly acts as a form of memoization that avoids synchronous com-

munication. Computation warranties continue to allow transactions to be strictly

4

serializable, although in a way that is more in line with a black-box view of trans-

action behavior that helps avoid contention.

1.3 Compositional Predicates for Low-Overhead Enforce-

ment

Since computation warranties can represent arbitrary read-only computations over

system state, they can be constructed and enforced using other warranties. This

compositionality helps to reduce overhead by making update checks incremental,

allowing update checks to stop at the simplest affected subexpression. When all

of a computation’s subexpressions are unaffected, the computation is guaranteed

to also be unaffected. Thus, we can efficiently determine when updates to values

used by the computation do not conflict with a warrantied result, without explicitly

recomputing the entire result to check each update.

Furthermore, as demonstrated by treaties in the homeostasis protocol by Roy

et al. [87], compositionality helps to divide enforcement responsibilities for predi-

cates over a distributed subset of the system state. This division can help to avoid

synchronization during update checks, limiting most checks to local state before

checking a distributed statement. Treaties as envisioned by Roy et al. were not

time-dependent and were limited to cases of a single layer of composition. How-

ever, they can be viewed as a form of warranty focused on enforcement overheads.

In Chapter 5, we generalize the design of treaties to support time-dependent state-

ments and arbitrary composition with predictive treaties. Arbitrary composition

helps to keep synchronization costs low by attempting to restrict synchronization

to relatively nearby subsets of nodes.

5

1.4 Capturing Trends with Time-Varying Predicates

The computation warranties design discussed in Chapter 4 is optimized for read-

only computations over data stored at a single node in the system. Unfortunately,

checking computations over distributed data may require synchronizing with stores.

In geodistributed settings with high latencies, this creates a large overhead for up-

date checks. Roy et al. [87] demonstrated that an application can avoid these syn-

chronizations by carefully selecting the subpredicates used to enforce a distributed

predicate.

Predictive treaties, presented in Chapter 5, generalize the design of treaties to

further reduce the frequency and overheads of synchronization for enforcement.

Predictive treaties are enforced by the system by composing subpredicates that,

according to a prediction model, are expected to avoid synchronization costs as

much as possible. This prediction model is constructed by estimating update

behavior based on low-overhead tracking of past update behavior.

Furthermore, predictive treaties support predicates that vary with time. This

allows the automatically chosen subpredicates to last even longer by asserting

statements that talk about bounds on the trends in data rather than the values

themselves. When update trends on the underlying local data are steady, dis-

tributed predicates over the data remain (and become increasingly) stable. As

demonstrated in Chapter 5 this entirely avoids synchronization to enforce some

predicates unlike earlier techniques with static predicates.

1.5 The Warranty Design Space

This dissertation explores various elements of how warranties can be designed,

building on prior work in the space. To help clarify the relationship between

6

various warranty-like abstractions developed both in this dissertation and in prior

work, we have identified four key aspects: consistency, revocability, scope of the

predicate, and how the abstraction can depend on time. To be clear, these features

are not a complete list of features that distinguish various designs; they outline

major distinctions between various types of warranties. These aspects affect how

clients use warranties and how the system manages them.

1.5.1 Consistency

Warranties are a form of generalized caching—clients use locally stored warranties

providing assertions on remote data to avoid blocking to fetch and validate the

data. The consistency guarantees of the warranty’s assertion affects how they

can be used to support various application consistency goals. Strongly consistent

guarantees, like the warranties presented in this dissertation, are easy to use in a

way that supports strong consistency for applications relying on them.

In contrast, weaker consistency guarantees trade off the overheads required to

ensure a guarantee is consistent with how much work the client needs to do to

achieve consistency using the guarantee. Using optimistically cached values that

do not guarantee strong consistency requires clients to validate their guarantees to

ensure consistency. However, weaker consistency does not require the system to

perform complicated protocols to keep cache entries consistent.

1.5.2 Revocability

Another key design element is who can use a warranty and how the system handles

updates that invalidate current warranties. Warranties can be classified into one

of two categories with respect to this feature: leased or public.

7

Leased warranties, such as leases [40], promises [51], treaties [87], and predictive

treaties [69], limit which nodes are allowed to use them. Public warranties, like

those discussed in Chapters 3 and 4, allow any node in the system to use them.

The difference between leased warranties and public warranties is a tradeoff

between retraction and sharing. Leased warranties are simple to retract, all nodes

authorized to use the warranty can be notified by a change to the guarantee, but are

difficult to share, each time the warranty is shared with a new node, the node has

to be registered as a user of that warranty. Public warranties are easily shared, any

node that has a copy of the warranty can use it, but difficult to retract, the system

would have to ensure that all nodes are notified of a change to the guarantee,

infeasible in systems with a massive or unknown number of nodes.

1.5.3 Predicate Scope

Warranty-like abstractions are often optimized for particular classes of predicates

based on the scope of their statements. These abstractions exhibit three levels of

predicate scope: object-, store-, or system-scope.

Object-scope warranties are the most common type and simplest for a sys-

tem to enforce. This describes traditional leases [40] and state warranties [66]

discussed in Chapter 3. Although most object-scope warranties are focused on

guarantees about the exact value, object-scope warranties also include statements

about bounds or other features of a single value, such as the bounds enforced by

escrow transactions [76].

Store-scope warranties are more general than objects, covering state of ob-

jects located on a single storage node in the system. Examples of store-scope

warranties include volume leases [110], promises [51], application caches such as

memcached [33] or TxCache [82], and the computation warranties [66] discussed

8

in Chapter 4. Store-scope warranties allow for guarantees that are stable despite

updates to the underlying data and allows applications to check store-wide state-

ments. Enforcing store-scope warranties does not require synchronization because

all of the data used by a predicate is located on a single node that can check

updates locally.

System-scope warranties, such as treaties [87] or predictive treaties [69], sup-

port predicates over data located anywhere in the system. This general abstraction

comes at the cost of potential synchronization costs for enforcing the guarantees.

Thus it is crucial for performance to ensure that the distributed guarantees are en-

forced by long-lasting store-scoped warranties. Chapter 5 discusses how predictive

treaties are designed to avoid these enforcement overheads.

1.5.4 Time Dependence

Finally, warranties vary in how they may depend on time. For example, many

designs have no time dependence, like the original treaties design [87] or application

caches like TxCache [82]. Many designs are time-limited, which limit how long a

system must enforce a guarantee, as in various types of leases [40, 110, 67, 104]

and the warranties discussed in Chapters 3 and 4. Chapter 5 demonstrates how

warranties can be time-varying, using time in the predicate statement. Time-

varying warranties can express guarantees about trends in the system state.

1.6 Dissertation Outline

This dissertation is organized as follows. First, the system model is presented for

the designs discussed (Chapter 2). In Chapters 3 and 4, public warranties are

presented based on work published at NSDI in 2014 with Jed Liu, Owen Arden,

9

Mike George, and Andrew Myers [66]. In Chapter 3, we focus on public state

warranties, discussing how they improve performance for applications by avoiding

communication for read validations. In Chapter 4, the design is generalized com-

putation warranties that support arbitrary predicates on the system state. Next

predictive treaties, leased warranties supporting time-varying predicates and de-

signed to avoid synchronization during enforcement, are presented in Chapter 5

based on work published at EuroSys 2019 with Jed Liu, Nate Foster, Johannes

Gehrke, and Andrew Myers [69]. Finally, in Chapter 6, conclusions and possible

directions for future work are discussed.

10

CHAPTER 2

SYSTEM MODEL

We assume a geodistributed system in which each node serves one of two main

roles: client nodes perform computations locally using persistent data from else-

where, and persistent storage nodes (stores) store primary copies1 of persistent

data. For example, the lower two tiers of the traditional three-tier web ap-

plication match this description: clients are application servers and stores are

database servers. Client nodes’ computations are organized into a series of trans-

actions, atomic groups of operations that when committed are reflected by the

stores. These transactions are performed using optimistic concurrency control

(OCC) [31, 56, 2]—the primary copies on the stores are not locked by the client

during computation; instead, the client logs the values read during the computa-

tion and afterward validates these values before updating persistent data at the

stores.

In practice, some machines may serve both roles, acting as both clients and

stores. Furthermore, a store may be implemented by a machine or by a set of

machines, possibly replicated across an availability zone2 for high availability. We

abstract from such implementation details of a store and just treat it as a single

storage node.

2.1 Strong Consistency

Warranties are intended to provide a simple programming model for application

programmers, offering strong consistency so programmers do not need to reason

about inconsistent or out-of-date state. In particular, the system should provide

1As opposed to cached and otherwise weakly replicated copies of the data clients can use
during computation.

2A group of data centers with low latency between them.

11

strict serializability [90], so each committed transaction acts as though it executes

atomically and in logical isolation from the rest of the system. Linearizability and

strict serializability strengthen serializability [78, 17]—transactions are performed

in a way that is equivalent to a serial schedule [31]—with an analogue of external

consistency [38]—the serial schedule is consistent with the external schedule, the

order they are performed by the client.3 Strict serializability is equivalent to pro-

viding linearizability [46] where the object is the entirety of the system’s persisted

data and transactions are the concurrent operations on that object. Thus, unlike

some prior work (e.g., [14, 13]) that only enforces notions of consistency defined

by programmer-specified invariants, we assume that the underlying system offers

strong consistency for all data by default. This ensures that strong consistency is

the default guarantee for applications that do not express more specific consistency

requirements.

We refer to the system state as seen by committed transactions as the current

system state; it is the set of object values that result from executing previously

committed transactions in the serialization order guaranteed by strict serializabil-

ity. In a running transaction that has not yet committed, an object may take on

a new value that is not yet visible to other transactions, and this object value

may be cached at the client(s) performing the transaction. Once the transaction

is committed, the new object value is updated at the object’s store and becomes

part of the current system state.

3This definition of external consistency is a bit less restrictive than Gifford’s definition of
external consistency that orders overlapping transactions by the time they are completed. We
do not require a particular ordering on transactions whose start and end times overlap, as in the
formal definition of linearizability [46].

12

2.2 Optimistic Concurrency Control

In a distributed transaction system using OCC (e.g., Gemstone [70], Thor [62],

Fabric [65]), clients fetch and cache persistent objects across transactions. Op-

timistic caching allows client transactions to largely avoid talking to stores until

commit time, unlike with pessimistic locking. The system is faster because persis-

tent data is replicated at the memories of potentially many client nodes. However,

care must be taken to avoid inconsistency among the cached copies.

To provide strong consistency, OCC logs reads and writes to objects. As part

of committing the transaction, clients send the transaction log to stores involved

in the transaction. The stores then check that the state of each object read or

modifies matches that in the store (typically by checking version numbers) before

applying updates.

These read and write validations can turn stores hosting very popular objects

into bottlenecks—all clients using an object must contact and check their cached

version against the store’s primary copy before committing. This is a fundamental

limit on scalability of traditional OCC, so a benefit of warranties is addressing this

bottleneck.

OCC is a reasonably popular technique for running distributed transactions

in industry. For example, a partially successful attempt at such a programming

model is the Java Persistence API (JPA) [22], which provides an object–relational

mapping (ORM) that translates accesses to language-level objects into accesses

to underlying database rows. JPA implementations such as Hibernate [48] and

EclipseLink [30] are widely used to build web applications. However, we want to

improve on both the consistency and performance of JPA. Optimism has become

increasingly popular for JPA applications, where the best performance is usually

achieved through an “optimistic locking” mode that, in many implementations of

13

JPA, provides snapshot isolation, a relatively strong consistency guarantee that is

weaker than strict serializability.4

2.3 Transactions Across Multiple Stores

To scale up a distributed transaction system, it is important to be able to add

storage nodes across which persistent data and client requests can be distributed.

Data can be distributed across stores in two ways: sharding and replication.

Sharding data across a distributed system partitions the data into subsets of the

data called shards which are stored on separate stores. In contrast, a system using

replication stores copies of the data on multiple stores. These two techniques can be

combined in various ways: for example, you can shard the data between different

data centers and then replicate the data in each shard across multiple nodes in

a given data center. In this work, we will be focused on sharding and treating

replication as an orthogonal or future consideration, unless otherwise specified.

As long as a given client transaction accesses data at just one store, and load

is balanced across the stores, the system scales well: each transaction can be

committed with just one round trip between the client and the accessed store.

In general, however, transactions may need to access information located at

multiple stores. For example, consider a web shopping application. A transaction

that updates the user’s shopping cart may still need to read information shared

among many users of the system, such as details of the item purchased.

Accessing multiple stores hurts scalability. To ensure strict serializability, all

data accessed during the transaction must be consistent with the stored primary

4The JPA 2 specification only guarantees snapshot isolation because it only guarantees that
objects written by a transaction are up to date—but, unfortunately, not the objects read unless
explicitly locked. Implementations differ in interpretation, however. When using implemen-
tations that only provide snapshot isolation, the programmer can sometimes turn on optional
extensions or otherwise perform workarounds to ensure strict serializability.

14

copies. Clients performing a distributed transaction run a two-phase commit

(2PC), coordinating with multiple stores to ensure strict serializability [17]. In

the first phase (the prepare phase), each store performs read and write valida-

tions5 to check if the transaction can be committed and if so, readies the updates

to be committed; it then reports to the coordinator whether the transaction is se-

rializable. If the transaction’s effect is determined to be consistent by every store,

all stores are told to commit in the commit phase. Otherwise, the transaction is

aborted and its effects are rolled back.

2.4 Clock Synchronization

Both warranties and predictive treaties assume that system nodes maintain loosely

synchronized clocks that agree with only limited precision. This assumption is

reasonable; the accuracy of clock synchronization offered by older protocols such

as NTP [75] and Marzullo’s algorithm [71] already suffices for the results presented

in this work. In fact, recent work has shown that clocks can be kept synchronized

with much greater precision and with failure rates that are lower than a host of

other more serious failures such as bad CPUs [25, 60, 36, 91].

5Often we’ll refer to read and write validations performed during the prepare phase as read
and write prepares.

15

CHAPTER 3

PUBLIC WARRANTIES

The need for strong consistency and a simple programming model has kept tra-

ditional databases with ACID transactions, such as Postgres [97], in business and

motivates modern transaction systems such as Google’s Spanner [25] and Cock-

roachDB [106]. However, transactions are traditionally considered to have poor

performance, especially in a distributed setting. In this work, we introduce public

warranties, a new mechanism that improves the performance of transactions, en-

abling them to scale better both with the number of application clients and with

the number of persistent storage nodes. Warranties help avoid the unfortunate

choice between consistency and performance.

A warranty is a time-dependent assertion about state issued by the system: it

is guaranteed to remain true (active) for the warranty’s term, a fixed period of

time. At the end of its term, the warranty expires and is no longer guaranteed to

be true. Times appearing in the warranties are measured by the clock of the store

that issued the warranty. As discussed in Chapter 2, I assume that clocks at nodes

are loosely synchronized using a clock synchronization protocol such as NTP [75].

In the next two chapters, we focus on public warranties. Public warranties,

unlike leased warranties, may be used and distributed by any node in the system—

public warranties do not require the system to register and track nodes using the

assertion. This novel design trades flexibility to retract the assertion early to enable

wide distribution and usage among clients in the system.1

The simplest form of warranty is a state warranty, an assertion that the concrete

1In the original publication that introduced warranties, published at NSDI 2014 [66], the
simple term warranty referred to what this dissertation calls public warranties. In this dissertation
we use the term warranty to discuss features that apply to both the public and leased designs
and otherwise will use the more specific terms when the discussion only applies to a particular
variant.

16

state of an object has a particular value. State warranties improve scalability by

eliminating the work needed for read preparing the warrantied object. For example,

a state warranty for an object representing a bank account might be

acct = {name = ’John Doe’, bal = 20345} until 1364412767

Here, the state warranty specifies the state of the object acct, with fields name and

bal, and the time marking the end of the warranty’s term, 1364412767. Client

nodes can use this state warranty to read the fields of acct in a transaction. If

that transaction prepares before time 1364412767, the client does not need to

read-prepare the version of acct seen; the state warranty guarantees the value is

consistent with the store’s copy.

In this chapter, I focus on public state warranties. Warranties generalize

OCC (Section 3.1) and read-leases (Section 3.2). Clients request warranties from

stores which issue them on demand (Section 3.3). Public warranties are distributed

throughout the system to clients that need them (Section 3.4). Updates to the

system are prevented from invalidating public warranties (Section 3.5), with im-

plications for performance (Section 3.6). The traditional 2PC protocol for dis-

tributed transaction can be modified to take advantage of warranties to avoid

round trips, improving performance (Section 3.8). Experimental evaluation us-

ing standard benchmarks and a real application for managing university courses

demonstrates that public warranties improve performance for distributed transac-

tions (Sections 3.9 and 3.10).

3.1 Warranties as Optimistic Concurrency Control

By making guarantees about the state of the system, warranties allow transactions

to be committed without preparing reads against the objects covered by warranties.

When all reads to a store involved in a transaction are covered by warranties, stores

17

need not be contacted for validation. Consequently, as we discuss in Section 3.8,

two-phase commit can be reduced to a one-phase commit in which the prepare

and commit phases are consolidated, or even to a zero-phase commit in which

no store need be contacted. The result is significantly improved performance and

scalability.

If a warranty expires before the transaction commits, the warranty may con-

tinue to be valid, meaning that the assertion it contains is still true even though

clients cannot rely on its remaining true. Clients can, however, still use the war-

ranty optimistically and check at commit time that the warranty remains valid.

Thus, state warranties generalize optimistic concurrency control. Traditional

optimistic concurrency control equates to always receiving a zero-length warranty

for the state of the object read, and using that expired warranty optimistically.

3.2 Warranties as Generalized Read Leases

Leases [40, 39] have been used in many systems (e.g., [103, 3]) to improve perfor-

mance. Warranties exploit the key insight of leases: time-limited guarantees in-

crease scalability by reducing coordination overhead for managing access to shared

objects. As defined originally by Gray and Cheriton, leases confer time-limited

rights to access objects in certain ways, and must be held by clients in order to

perform the corresponding access. Conversely, warranties are time-limited asser-

tions about what is true in the distributed system, and are not, therefore, rights

conferred to a particular set of nodes.

Read leases are state warranties, time-dependent assertions on the state of a

single object. Since read leases on objects effectively prevent modifying object

state, they enforce assertions regarding the state of that data.

While read leases are, for all intents and purposes, a class of warranties, there is

18

a fundamental difference between the lease and warranty perspectives. The value of

the warranty (assertion) perspective is that state warranties naturally generalize to

expressive assertions over state—in particular, computation warranties that specify

the results of application-defined computations over the state of potentially many

objects, discussed in Chapter 4. While there has been work on volume leases

for groups of objects [110], these leases treat the group as though it were an

opaque single object and do not support predicates like computation warranties.

By supporting predicates, computation warranties do not delay updates that do

not change the predicate’s result—warranties help separate the features of the state

used by the application from the particular values determining these features.

3.3 Issuing State Warranties

As clients perform transactions, they fetch objects they do not have locally cached

and read-prepare objects for which they do not have active warranties. State

warranties are requested automatically when objects are either fetched or read-

prepared by a client. When a store issues a warranty, the warranty’s term is set

to appropriately balance performance trade-offs. Stores track issued warranties

until the end of their terms so the store can defend against invalidating updates

as discussed in Section 3.5.

3.4 Distributing Public Warranties

Public warranties can be used regardless of how they get to clients and can be

shared among any number of clients without contacting the store. Therefore, a

variety of mechanisms can be used to distribute public warranties to clients.

Clients may directly query stores for warranties. However, the system can avoid

19

CDN

Clients

Stores

Public Warranties

Public Warranties

Data requests

Updates

Figure 3.1: Public warranty distribution architecture. Public warranties can be
distributed through a CDN to reduce load on stores.

load on the store by using a content distribution network (CDN) to serve public

warranty queries as shown in Figure 3.1.

Going a step further, applications can subscribe to warranties that match a

given pattern when requesting them. Stores automatically refresh warranties with

longer terms before the original term expire, pushing these extended warranties

either directly to clients or into the CDN. The CDN does not require a compli-

cated update procedure to ensure consistency for public warranties because public

warranties are irrevocable—if clients read an old value from the CDN before the

refreshed value is propagated, consistency is not violated, the public warranty’s

original term is still enforced. Warranty refresh makes it feasible to satisfy client

requests with shorter warranty terms, consequently reducing write latency.

This design differs from using direct replication, a separate strategy used in

many distributed storage systems to achieve high availability, low latency, and

durability. Those three goals are handled separately here. Distributing public

warranties through a CDN makes data objects highly available with low latency,

without damaging consistency. Because the authoritative copies of objects are

located at stores, a write to an object requires a round trip to its store; the latency

this introduces is ameliorated by the support for relatively large transactions, in

20

which communication with stores tends to happen at the end of transactions rather

than throughout. This CDN design does not inherently achieve high durability, this

can be done by having stores replicate the data durably across multiple machines.

To avoid the latency and throughput problems of geodistributed replication, these

stores can keep replicas on a set of local machines rather than replicating across

the entire system.

3.5 Defending Public Warranties

Transactions may try to perform updates that affect objects on which active war-

ranties have been issued. Updates that invalidate active warranties would vio-

late transactional isolation and consistency guarantees for clients using those war-

ranties. Therefore, stores must defend warranties against invalidating updates.

A public warranty can be defended against an invalidating update transaction

in two ways: the transaction can either be rejected or delayed. If rejected, the

transaction will abort and the client must retry it. If delayed, the updating trans-

action waits to prepare until it can be safely serialized or is aborted by the client

due to a failed prepare at another store. Rejecting the transaction does not solve

the underlying problem of warranty invalidation, so delaying is typically the better

strategy if the goal is to commit the update. To prevent write starvation, the store

stops issuing new warranties on the affected state until after the commit. The

update also shortens the term of subsequent warranties anticipating future writes,

as projected by the estimation model discussed in Section 3.7.

Leased warranties can be enforced in a third way: retraction. Before the invali-

dating update is applied, the system notifies all holders of the warranty that it is no

longer valid and then stops enforcing the warranty. This requires the store to track

all nodes that currently hold the warranty, which creates an overhead that grows

21

with the number of nodes that hold the warranty. Although public warranties can,

in theory, be retracted by similarly contacting all nodes, this is practically infeasi-

ble in many distributed systems where the set of clients is enormous or unknown.

3.6 Performance Trade-offs

Warranties improve read performance for the warrantied objects, but require new

overheads for writes to these objects. Such a trade-off appears to be an unavoid-

able when providing strict serializability. For example, in conventional database

systems that use pessimistic locking to enforce consistency, readers are guaranteed

to observe consistent states, but update transactions must wait until all read trans-

actions have completed and released their locks. With many simultaneous readers,

writers can be significantly delayed. Thus, warranties occupy a middle ground

between optimism and pessimism, using time as a way to reduce the coordination

overhead incurred with locking.

The key to good performance, then, is to issue warranties that are long enough

to benefit readers, avoiding read prepares, but not so long that they delay writers

noticeably. If there is no suitable term for a warranty that balances these concerns,

the store should not issue a warranty. In Section 3.7, we discuss how a simple model

with low-overhead estimates for setting warranty terms appropriately.

For applications that require both high write throughput and high read through-

put to the same object, using replication is essential to scale the system. The cost

of keeping replicas consistent makes it difficult to provide strict serializability with

good performance. If weaker consistency guarantees are acceptable, however, there

is a simple workaround: keeping weakly consistent replicas of the object by explic-

itly maintaining the state in multiple distinct strongly consistent objects. Writes

can go to one or more of these distinct objects that are read infrequently, period-

22

ically propagating these updates (possibly after reconciliation of divergent states)

to a frequently read object for which warranties may be issued. This is a much

easier programming task than starting from weak consistency and trying to imple-

ment strong consistency where it is needed. The challenging part is reconciliation

of divergent replicas, which is typically needed in weakly consistent systems in any

case (e.g., [102, 88, 27]).

3.7 Setting Warranty Terms with Workload Estimation

Depending on how warranty terms are set, warranties can either improve or hurt

performance. It is usually possible to automatically and adaptively set warranty

terms to achieve a performance increase. Warranty terms should be set so the

expected benefits to readers and stores outweighs the expected additional overhead

to writers.

Warranties improve performance by avoiding read prepares for objects, reduc-

ing the load on stores and on the network. If all read and write prepares to a

particular store can be avoided, warranties eliminate the need even to coordinate

with that store.

Warranties can hurt performance primarily by introducing overheads for writes

to objects. During a warranty’s term, writers are delayed while the system defends

the assertion. Longer warranty terms create a wider window during which writes

will experience delays. The length of these delays depends on how the warranty is

defended. In the case of public warranties, writes are delayed until the end of the

term. For leased warranties, which can be retracted, writes are delayed until either

the system can retract the warranty or the term ends, whichever occurs first.

Furthermore, excessively long terms may also allow readers to starve writers.

The system mitigates this starvation by refusing to issue new warranties while

23

Table 3.1: Policy parameters for setting a warranty’s term.
Parameter Description Units

R read rate time−1

W write rate time−1

L warranty term time
Lmax max warranty term time
k1 max expected writes during term unitless
k2 min expected reads during term unitless

writers are attempting to invalidate an outstanding warranty. Note that with

traditional OCC, writers can block readers by causing all read prepares to fail [79];

thus, warranties shift the balance of power away from writers and toward readers,

addressing a fundamental problem with OCC.

To find the right balance between the good and bad effects of warranties, we

take a dynamic, adaptive approach. Warranty terms are automatically and indi-

vidually set by stores that store the relevant objects. Fortunately, stores observe

enough to estimate whether warranty terms are likely to be profitable. Stores

see both read prepares and write prepares. If the object receives many read pre-

pares and few or no write prepares, a state warranty on that object is likely to be

profitable. A similar observation applies to computation warranties.

To determine whether to issue a warranty for an object, and the length of its

term L if a warranty is issued, the system plugs measurements of object usage into

a simple system model. The system measures the rate W of writes to each object,

and when no warranty is issued on the object, it also measures the rate R of reads

to the object. Both rates are estimated using an exponentially weighted moving

average (EWMA) [50] of the intervals between reads and writes.

During a warranty’s term, many read prepares are no longer visible to the store.

To account for this, our implementation modifes EWMA to exponentially decay

historical read-prepare data during warranty periods. Empirically, this modifica-

tion improves the accuracy of rate estimation. To lower the storage overhead of

24

monitoring, unpopular objects are flagged and given lower-cost monitoring as long

as they remain unpopular.

To ensure that the expected number of writes delayed by a warranty is bounded

by a constant k1 < 1 that controls the trade-off between read and write transac-

tions. The warranty term is set to k1/W with a maximum warranty Lmax used to

bound write delays. Our goal is that warranties are profitable: they should remove

load from the store, improving scalability. A public warranty eliminates roughly

RL read prepares over its term L, but adds the cost of issuing the warranty and

some added cost for each write that occurs during the term. The savings of issuing

a warranty is positive if each write to an object is observed by at least k2 reads

for some value k2, giving us a condition RL ≥ k2 that must be satisfied in order

to issue a warranty. The value for constant k2 can be derived analytically using

measurements of the various costs, or set empirically to optimize performance.

The tension between write latency and read throughput can also be eased by

using warranty refresh. The term L is computed as above, but warranties are

issued to clients with a shorter term corresponding to the maximum acceptable

update latency. The issuing store proactively refreshes each such warranty when

it is about to expire, so the warranty stays valid at clients throughout its term.

3.8 Using Warranties in Transactions

Warranties improve the performance of OCC by reducing the work required for

two-phase commit [17] by avoiding read prepares and, in some cases, allowing

prepare phases to be eliminated entirely.

25

Read-Only

Must
renew?

Prepare

AbortCommit

No

Yes

Success Fail

Read-Write

Prepare

Must
renew?

Extend

Abort Commit

Fail

Commit Time

Yes

No

Fail Success

Figure 3.2: The warranty commit protocol.

3.8.1 The Warranty Commit Protocol

When a transaction completes, the client performs a modified two-phase commit,

illustrated in Figure 3.2 for both read-only and read-write transactions. In the

prepare phase, the client sends the write set of the transaction (if any), along

with any warranties in the read set whose term has expired. If all warranties

in the read set can be renewed, the transaction may commit. Since outstanding

warranties may cause the updates to be delayed, the store responds with a commit

time indicating when the commit may be applied successfully.

When the client receives a commit time from all stores, it checks that the terms

of the warranties it holds exceed the maximum commit time. If not, it attempts

to renew these warranties beyond the commit time in an additional extend phase.

If active warranties are obtained for all dependencies, the client sends the commit

message, and the stores commit the updates at the specified time.

26

Table 3.2: Round trips performed during the commit protocol with Warranties vs.
traditional OCC. Warranties require fewer round trips than traditional OCC in
highlighted cases.

Stores Stores Round Trips:
contacted written Warrantied? Warranties OCC

1+ 0 Y 0 1
1+ 0 N 1 1
1 1 Y/N 1 1

2+ 1 Y 1 2
2+ 1 N 2 2
2+ 2+ Y 2 2
2+ 2+ N 3 2

3.8.2 Avoiding Protocol Phases

While a two-phase commit, with two round trips of messages, is required in the

general case, performance can be improved by eliminating or combining round

trips performed when possible. For read-only transactions, the second round trip

of messages for the commit phase is superfluous, and clients executing transactions

that involve only one store can combine the prepare and commit messages into

one round trip. The optimizations to 2PC that warranties make possible are

summarized in Table 3.2.

The read-only (rows 1–2) and single-store optimizations (row 3) are available

with or without warranties. However, unexpired warranties enable eliminating

additional round trips, shown by the two rows highlighted in gray.

Row 1 shows that read-only transactions whose read set is covered by active

warranties may commit without communicating with stores—a zero-phase commit.

This optimization matters because for read-biased workloads, most transactions

will be read-only.

Row 4 shows that transactions that read from multiple stores but write to only

one store may commit after a single round trip of messages if their read set is

warrantied on all other stores. This single-phase optimization pays off if objects

27

are stored in such a way that writes are localized to a single store. For example,

if a user’s information is located on a single store, transactions that update only

that information will be able to exploit this optimization.

While warranties usually help performance, they do not strictly reduce the

number of round trips required to commit a transaction. Transactions performing

updates to popular data may have their commits delayed. Since the commit time

may exceed the expiration time of warranties used in the transaction, the additional

extend message may be required to renew these warranties beyond the delayed

commit time, as shown in the final row.

3.9 Public Warranties Implementation

To evaluate public warranties as a mechanism for improving performance for dis-

tributed transaction systems, we extended the Fabric secure distributed object

system [65]. Fabric provides a high-level programming model that, like the Java

Persistence API, presents persistent data to the programmer as language-level

objects. Language-level objects may be both persistent and distributed. It imple-

ments strict serializability using OCC.

Fabric also has many security-related features—notably, information flow control—

designed to support secure distributed computation and also secure mobile code [8].

The dynamic security enforcement mechanisms of Fabric were not turned off for

our evaluation, but they are not germane to this work.

We extended the Fabric system and language to implement the mechanisms

described in this dissertation. Our extended version of Fabric supports both pub-

lic state warranties and public computation warranties. Computation warranties,

discussed and evaluated in Chapter 4, were supported by extending the Fabric lan-

guage with memoized methods. Client (worker) nodes were extended to use public

28

warranties during computation and to evaluate and request public computation

warranties as needed. The Fabric dissemination layer, a CDN, was extended to

distribute public warranties and to support public warranty subscriptions. Fab-

ric workers and stores were extended to implement the new transaction commit

protocols, and stores were extended to defend and revalidate public warranties.

The previously released version of Fabric (0.2.1) contained roughly 44,000 lines

of (non-blank, non-comment) code, including the Fabric compiler and the run-

time systems for worker node, store nodes, and dissemination nodes, written in

either Java or the Fabric intermediate language. In total, about 6,900 lines of code

were added or modified across these various system components to implement

warranties.

Fabric ships objects from stores to worker nodes in object groups rather than

as individual objects. State warranties are implemented by attaching individual

warranties to each object in the group. Issuing public warranties for object groups,

similar to volume leases [110], could potentially reduce the overhead of managing

warranties; this has been left to future work, however.

Some features of the warranties design have not been implemented; most of

these features are expected to improve performance further. The single-store opti-

mization of the commit protocol has been implemented for base Fabric, but rows

3–5 of Table 3.2 were not implemented for warranties. The warranty refresh mech-

anism was not implemented for these experiments.

3.10 Evaluation

We evaluated public state warranties against existing OCC mechanisms, and other

transactional mechanisms, primarily using two programs. First, we used the mul-

tiuser OO7 benchmark [23]. Second, we used versions of Cornell’s deployed Course

29

Management System [19] (CMS) to examine how public warranties perform with

real systems under real-world workloads. Both of these programs were ported to

Fabric in prior work [65].

3.10.1 Multiuser OO7 Benchmark

The OO7 benchmark was originally designed to model a range of applications

typically run using object-oriented databases. The database consists of several

modules, which are tree-based data structures in which each leaf of the tree con-

tains a randomly connected graph of 20 objects. In our experiments we used the

“SMALL” sized database. Each OO7 transaction performs 10 random traversals

on either the shared module or a private module specific to each client. When

the traversal reaches a leaf of the tree, it performs either a read or a write action.

These are relatively heavyweight transactions compared to many current bench-

marks; each transaction reads about 460 persistent objects and modifies up to 200

of them. By comparison, if implemented in a straightforward way with a key-

value store, each transaction would perform hundreds of get and put operations.

Transactions in the commonly used TPC-C benchmark are also roughly an order

of magnitude smaller [105], and in the YCSB benchmarks [109], smaller still.

Because OO7 transactions are relatively large, and because of the data’s tree

structure, OO7 stresses a database’s ability to handle read and write contention.

However, since updates only occur at the leaves of the tree, writes are uniformly

distributed in the OO7 specification. To better model updates to popular objects,

we modified traversals to make read operations at the leaves of the tree exhibit a

power-law distribution with α = 0.7 [20]. Writes to private objects are also made

power-law distributed, but remain uniformly distributed for public objects.

30

3.10.2 Course Management System

The CS Course Management System [19] (CMS) is a 54k-line Java web application

used by the Cornell computer science department to manage course assignments

and grading. The production version of the application uses a conventional SQL

database; when viewed through the JPA, the persistent data forms an object graph

not dissimilar to that of OO7. We modified this application to run on Fabric. To

evaluate computation warranties, we memoized a frequently used method that fil-

ters the list of courses on an overview page, these results are discussed in Chapter 4.

We obtained a trace from Cornell’s production CMS server from three weeks in

2013, a period that encompassed multiple submission deadlines for several courses.

To drive our performance evaluation, we took 10 common action types from the

trace. Each transaction in the trace is a complete user request including gener-

ation of an HTML web page, so most request types access many objects. Using

JMeter [52] as a workload generator, we sampled the traces, transforming query

parameters as necessary to map to objects in our test database with a custom

JMeter plugin.

3.10.3 Comparing with Hibernate/HSQLDB

To provide a credible baseline for performance comparisons, we also ported our

implementation of CMS to the Java Persistence API (JPA) [22]. We ran these im-

plementations with the widely used Hibernate implementation of JPA 2, running on

top of HyperSQL (HSQLDB), a popular in-memory database in READ COMMITTED

mode. For brevity, we refer to Hibernate/HSQLDB as JPA. For JPA, we present

results only for a single database instance. Even in this single-store setting, and

even with Hibernate running in its optimistic locking mode, which does not en-

force serializability, Fabric significantly outperforms JPA in all of our experiments.

31

(Note that JPA in optimistic locking mode is in turn known to outperform JPA

with pessimistic locking, on read-biased workloads [96, 32]). This performance

comparison aims to show that Fabric is a good baseline for evaluating the per-

formance of transactional workloads: its performance is competitive with other

storage frameworks offering a transactional language-level abstraction.

3.10.4 Experimental Setup

Our experiments use a semi-open system model. An open system model is usually

considered more realistic [89] and a more appropriate way to evaluate system scal-

ability. Worker nodes execute transactions at exponentially distributed intervals

at a specified average request rate. Consequently, each worker is usually running

many transactions in parallel. Overall system throughput is the total of through-

put from all workers. To find the maximum throughput, we increase the average

request rate until the target throughput cannot be achieved.

The experiments are run on a Eucalyptus cluster. Each store runs on a virtual

machine with a dual core processor and 8 GB of memory. Worker machines are

virtual machines with 4 cores and 16 GB of memory. The physical processors are

2.9 GHz Intel Xeon E5-2690 processors.

The parameters k1 and k2 (Section 3.7) are set to 0.5 and 2.0, respectively; the

maximum public warranty term was 10 s. In our experience, performance was not

very sensitive to k1 and k2, although this was not rigorously evaluated.

3.10.5 Results

Scalability. We evaluated scalability using the OO7 benchmark with different

numbers of stores. A “shared store” was reserved for the assembly hierarchies of all

modules. The component parts of the modules were distributed evenly across the

32

1 3 5 7
0

1,000

2,000

Stores

M
ax

im
um

th
ro

ug
hp

ut
(t

x/
s)

Fabric
Public Warranties

Figure 3.3: OO7 maximum throughput on a 2%-write workload as the number of
stores increases. Public warranties allow throughput to scale up with more stores.

remaining stores. Only shared composite parts were placed on the shared store.

Results presented are the average of three runs.

Figure 3.3 shows maximum throughput in total transactions committed per

second by 36 workers, as the number of stores increases. Error bars show the

standard deviation of the measurements across three trials of the configuration.

As expected, adding stores has little effect on maximum throughput in base Fabric

because the shared store is a bottleneck. Public warranties greatly reduce load

on the shared store allowing us to add roughly 400 tx/s per additional store.

Note that the plot only counts committed transactions; the percentage of aborted

transactions for Fabric at maximum throughput ranges from 2% to 6% as the

number of stores increases from 3 to 7; with public warranties, from 4% up to

15%.

Table 3.3 reports on the performance of the CMS application in various config-

urations with three trials each. The first three rows of Table 3.3 show that Fabric,

without or without public warranties, delivers more than an order of magnitude

performance improvement over JPA. Although the JPA implementation enforces

33

0 2 5 10
0

1,000

2,000

3,000

Write percentage

M
ax

im
um

th
ro

ug
hp

ut
(t

x/
s)

Fabric
Public Warranties

Figure 3.4: Effect of write percentage on OO7 maximum throughput on 3 stores
with 24 workers.

Table 3.3: CMS throughput and latency on various systems with public warranties
highlighted. Both are averaged over 10 s at max throughput across three trials.

System Stores Tput (tx/s) Latency (ms)
JPA 1 72± 12 211± 44

Fabric 1 3032± 144 143± 120
Public Warranties 1 4142± 112 27± 27

Fabric 3 4090± 454 311± 175
Public Warranties 3 5886± 124 35± 4

weaker consistency, Fabric’s more precise object invalidation helps performance as

contention increases. Public warranties help improve performance further, even in

a single-store configuration.

To evaluate how the system scales for a more realistic workload, we also ran

CMS with 3 stores using Fabric and public warranties. Two stores each held data

for multiple courses, while the third store contained metadata. As Table 3.3 shows,

public warranties scale better than Fabric with the additional stores.

Latency. Increases in throughput would be less compelling if they came at the

cost of high latency. Table 3.3 also reports the latency measured with the CMS

workload on the various systems. Fabric has similar latency with or without public

34

warranties.

Figure 3.4 shows how the performance of public warranties is affected by the

fraction of update transactions. Four different workload mixes were measured using

three trials, each having a 94:6 shared-to-private traversal ratio and a 1:10 shared-

to-private write ratio. When more than 10% of the transactions are updates, the

cost of maintaining and issuing public warranties in the current implementation

is too high to obtain a performance improvement. The latencies at some of these

throughputs are higher than Fabric’s, but still relatively low. At 2% and 5% writes,

the latency of public warranties is about 400 ms higher than Fabric’s but nearly

the same as Fabric’s at 0% and 10% writes.

Warranties can result in delaying transactions that are attempting to write to

an object that has a state warranty. We call this write delay. For all of the runs

depicted in Figure 3.4, the median write delay is 0 ms. However, some fraction of

transactions are forced to wait until one or more public warranties expire. The

more read-biased the transaction, the more frequently this happens. In the 2%-

write workload, 70% of read-write transactions see no write delay. In the 10%-write

workload, 82% see no write delay. Among those that encounter write delay, the

delay is roughly uniformly distributed from 0 up to the max public warranty length.

3.11 Discussion

State warranties can dramatically improve the performance of a distributed trans-

action system by allowing clients to avoid read validation for state that is guaran-

teed to be consistent with the store. When all object values read by a transaction

are guaranteed consistent with state warranties, a client can skip phases of the tra-

ditional two-phase commit protocol, leading to reduced load on stores and greater

throughput.

35

These performance gains come at the cost of delaying updates that would in-

validate warranty assertions, however, making state warranties beneficial primarily

for objects that are read much more frequently than they are updated. In our de-

sign, we identify objects that are beneficial to issue public state warranties for

using a low-overhead prediction model.

Fortunately, warranties are not limited to simple equalities for object values

and can be beneficial even in cases where much of the data is not mostly read.

In the next chapter I discuss computation warranties which demonstrate how the

warranty design can be used to provide application-level assertions. Computation

warranties can provide further benefits over state warranties by allowing applica-

tions to specify transaction behavior in a black-box manner. Transactions can use

warrantied computation results in place of performing the computation, avoiding

contention from individual reads and writes that the explicit computation would

require.

36

CHAPTER 4

COMPUTATION WARRANTIES

Computation warranties generalize state warranties to support arbitrary com-

putation on a store’s state. A computation warranty is a guarantee until time t

of the truth of a logical formula ϕ, where ϕ can mention computational results

such as the results of method calls. We focus here on the special case of public

warranties generated by function calls, where ϕ has the form o.f(~x) = v for some

object o on which method f is invoked using arguments ~x, producing a value v to

be obtained from the warranty. Note that the value returned by f need not be a

primitive value. In the general case, it may be a data structure built from both

new objects constructed by the method call and preexisting objects.

Computation warranties generated by function calls can naturally be used to

perform memoization where previously computed results are cached and reused in

place of recomputing the result [73]. In distributed applications, it is common to

use a distributed cache such as memcached [33] to cache previously computed re-

sults to be reused by many nodes. For example, web application servers can cache

the text of commonly used web pages or content to be included in web pages. Often

services like memcached are not built to ensure strong consistency of the cached

results, and require additional effort or tolerating potentially stale results. Compu-

tation warranties can be used to cache such computed results without abandoning

strong consistency.

For example, a computation warranty asserting a computation that checks there

is at least $100 in a bank account would be

acct.has at least(100) = true until 1556037120

Here, the account object acct has a method has_at_least which checks the

balance’s value against the given lower bound amount. Clients can use this com-

37

putation warranty in a transaction to check the lower bound on the account rather

than explicitly reading the account object’s state explicitly. If that transaction

prepares before time 1556037120, the client does not need to compute the result

explicitly or read-prepare acct. Unlike a state warranty on acct, this computation

warranty allows updates to acct that do not change the result.

Computation warranties improve scalability for three reasons:

1. Similar to state warranties, computation warranties reduce read prepare over-

heads.

2. Computation warranties enable the consistent distributed memoization of

computed results, saving clients from repeating computations.

3. Computation warranties enforce strong consistency without requiring explicit

version checks on individual objects the result was computed from. As a

result, they help to avoid unnecessary contention between transactions whose

application-level behaviors are not in conflict.

In this chapter I discuss how the design in Chapter 3 can be extended to support

assertions on computations on stores, focusing on public computation warranties.

A few example applications where computations warranties can improve scalabil-

ity and performance are described (Section 4.1). Applications use computation

warranties by marking functions for which computed results should be warrantied

(Section 4.2). Computation warranties are designed to ensure they can be used

in place of performing a computation without visibly changing the program’s be-

havior (Section 4.3). Computation warranties are requested by clients before or

concurrent with computing a call of a flagged method. If no matching warranty

has been issued, clients can propose a new computation warranty after performing

the call (Section 4.4). When a client holds a computation warranty, they may use

it in place of performing the call (Section 4.5). Computation warranty terms are

38

set using a generalization of the estimation model used for state warranties (Sec-

tion 4.6). Computation warranties are defended like state warranties. However,

many updates may not affect an asserted result, and therefore the store does not

need to delay these transactions. To efficiently check if an update would invalidate

a computation warranty, the store incrementally checks the effects of an update

on warrantied subcomputations (Section 4.7). Computation warranties offer im-

proved performance over state warranties in cases where transactions are often

reading stable results of computation on frequently updated state (Section 4.9).

4.1 Example Applications

In many distributed systems, ensuring that cached computation results are up to

date is an involved and error-prone process. Computation warranties make this

simple, however, as the computed results are guaranteed to be true during their

term and can be constructed compositionally to help break up the work in checking

potentially invalidating updates. Here are a series of examples where computation

warranties may be used to improve performance.

4.1.1 Generated Web Pages

In many web applications, a significant fraction of the work to be done is the

computation of the HTML code for the application’s initial home page. Often, the

home page does not change often even though fresh computation of the home page

requires accessing a substantial amount of persistent information. For example, a

social media service’s home page may show the current top trending topics. The

generated home page content, computed using data from various objects, could

be cached and distributed with a computation warranty with an assertion like the

39

following;

1 app.home_page() = str

Here, the result str produced by the warranty is a web page represented as a

string or perhaps as an abstract syntax tree. The latter representation would

enable issuing warranties for different parts of the page.

In modern web applications, systems often cache generated pages in ways that

are weakly consistent and sometimes require manual management. With computa-

tion warranties, however, the cached page is guaranteed to be consistent and does

not require manual updates.1

4.1.2 Top N Items

Many applications track and query the top-ranked N items among some large set

such as advertisements, product choices, search results, poll candidates, or game

ladder rankings. Although the importance of having consistent rankings may vary

across applications, there are at least some cases in which the right ranking is

important and may have monetary or social impact. Election outcomes matter,

product rankings can have a large impact on how money is spent, and game players

care about ladder rankings.

To cache the results of such a computation, we might define a computation

top(n, i, j), which returns the set s of the n top-ranked items whose indices

in an array of items lie between indices i and j. A computation warranty with

an assertion of the form s = top(n, first, last) then allows clients to share the

computation of the top-ranked items within the full range of indices.

1Of course, there updates to the content on the homepage may be delayed or blocked to ensure
consistency. If blocking invalidating updates is unacceptable, treaties (Chapter 5) or some other
leased warranty may be more appropriate than the public warranty design evaluated in this
chapter, although this limits how widely the results can be shared.

40

The top function has index arguments i and j to permit top to be implemented

recursively and efficiently using results from subranges, on which further warranties

are issued. We discuss later in more detail how this approach allows computation

warranties to be updated and recomputed efficiently in Section 4.7.

4.1.3 Searching for Airline Seats

In an online booking application, clients are likely to view many flights before

purchasing their tickets. Thus flights are viewed much more often than their seat-

ing is updated. In this scenario, reducing read-prepare overheads helps improves

scalability.

Efficient searching over suitable flights can be supported by issuing warranties

guaranteeing that at least a certain number of seats of a specified type are available;

for a suitable constant number of seats n large enough to make the purchase, a

warranty asserting a method equivalent to the following works:2

1 flight.seats_available(type) >= n

This warranty helps searching efficiently over the set of flights on which a ticket

might be purchased. It does not help with the actual update when a ticket is

purchased on a flight. In this case, it becomes necessary to find and update the

actual number of seats available. However, this update can be done quickly when

it does not invalidate the result asserted by the warranty.

4.2 Programming with Computation Warranties

Computation warranties explicitly take the form of logical assertions, so they can

be requested by using a template for the desired logical assertion. In the airline

2As discussed below, computation warranties are restricted to method calls and their results
in practice.

41

seat reservation example above, a query of the form

1 flight.seats_available(type) >= ?

might be used to find all available computation warranties matching the query,

and at the same time fill in the “?” with the actual value n found in the warranty.

In the case where multiple warranties match, a warranty might be chosen whose

duration and value of n are “best” according to application-specific criteria.

In this chapter, we pursue a more transparent way to integrate warranty queries

into the language, via memoized function calls. For example, we can define a

memoized method with a straightforward implementation

1 memoized boolean seats_lb(Seat t, int n) {

2 return seats_available(t) >= n;

3 }

that returns whether at least n seats of the desired type are still available on the

flight. The keyword memoized indicates that its result is to be memoized and

warranties are to be issued on its result. To use these warranties, client code uses

the memoized method as if it were an ordinary method, as in the following code:

1 for (Flight f : flights)

2 if (f.seats_lb(aisle, seats_needed))

3 display_flights.add(f);

When client code performs a call to a memoized method, the client automati-

cally checks to see if a warranty for the assertion ? = f.seats_lb(type, n) has

either been received already or can be obtained. If so, the result of the method call

is taken directly from the warranty. If no warranty can be found for the method

call, the client executes the method directly.3

3From a logical perspective, “?” represents an existentially quantified variable for which the
system finds a witness.

42

4.3 Ensuring Correct Behavior Using Computation War-

ranties

Our goal is that computation warranties do not complicate programmer reason-

ing about correctness and consistency—there should be no observable differences

between performing the call and using the asserted result. Therefore, given a mem-

oized method f , a computation of the form v = o.f(~x) occurring in a committed

transaction should behave identically whether or not a warranty is used to obtain

its value. This principle has several implications for how computation warranties

work—only some computations make sense as computation warranties and updates

must be prevented from invalidating active warranties.

To ensure that using a computation warranty is equivalent to evaluating it

directly, we impose two restrictions on warrantied computations:

1. Warrantied computations must be deterministic. All calls of the underlying

computation starting in equivalent system states must compute equivalent

results. Therefore, computations using a source of nondeterminism, such as

input devices or the system clock, do not generate computation warranties.

2. Warrantied computations cannot have observable side effects. Side effects are

considered to be observable only when they update the state of objects that

existed prior to the computation.

This definition of observable means that warrantied computations are allowed

to create and initialize new objects as long as they do not modify pre-existing

ones. For example, the top-N example from Section 4.1.2 computes a new object

representing a set of items, and it may be convenient to create the object by ap-

pending items sequentially to the new set. Warranties on this kind of side-effecting

computation are permitted. Enforcing this definition of the absence of side effects

43

is straightforward in a system that already logs which objects are read and written

by transactions. At commit time, the transaction’s write set is intersected with the

read set of each potential computation warranty. A computation is marked as non-

memoizable when a write is logged to a preexisting object during the computation

or after the computation in a parent transaction.

In situations where a warrantied computation creates and returns new objects,

it is crucial for correctness of the computation that the objects returned by the war-

ranty are distinct from any existing objects. This desired semantics is achieved by

creating copies of all objects created when the asserted result was computed when-

ever a computation warranty is used. These objects are identified and recorded in

the transaction log when computing the result.

4.4 Proposing and Issuing Computation Warranties

Whenever code at a client makes a call to a memoized method, the client may

search for a matching computation warranty in its local cache. If the client is not

already holding such warranty, it may search using a CDN, if available, or request

the warranty directly from the appropriate store. This can be optimized by having

the client execute the method in parallel with the search in case no warranty exists.

If the client cannot find an existing computation warranty, it performs the

computation itself. It starts a new transaction and executes the method call.

As the computation is evaluated, the transaction’s log keeps track of all reads,

writes, object creations, computation warranties used, and computation warranties

proposed by the call. When the computation is finished, the result is recorded and

the log is checked to verify that the call does not violate any of the restrictions

outlined in Section 4.3. If the warranty is still valid, the call, result, and the logged

operations performed during the computation are gathered to form a warranty

44

proposal.

At commit time, if the warranty proposal has not already been invalidated

by an update to its read set later in the parent transaction, the proposal is sent

to the store. The store looks at the request and, using the same mechanism as

for state warranties, sets a warranty term as discussed in Section 4.6. For state

warranties, terms are set using usage statistics estimated for the associated object.

Computation warranties terms can be set in a similar fashion, using statistics

estimated for each call with the same set of arguments. Finally, the computation

warranty is issued to the requesting client and the store begins to defend the new

warranty or warranties proposed by the client.

4.5 Using Computation Warranties

Computation warranties are used whenever available to the client, to avoid per-

forming the full computation. At the start of a call to a method flagged as poten-

tially warrantied, the client checks if there is a matching computation warranty. If

an appropriate computation warranty is present, the call immediately returns the

associated result asserted by the computation warranty and the transaction adds

the computation warranty to its read set.

If the client uses a computation warranty that would expire before the transac-

tion commits, the client can still use that expired warranty optimistically, similar

to state warranties. At commit time, the expired warranty is revalidated during

the prepare phase, exactly like a read prepare. Computation warranties are reval-

idated by the store by recomputing the call and checking the result against the

assertion.

45

4.6 Setting Computation Warranty Terms

The method for setting state warranty terms also applies to computation war-

ranties, where the term is determined based on estimates of read and write rates

for the computation warranty’s asserted result. A computation warranty is read

when a transaction uses the asserted result in place of a call. Transactions that

perform updates that change a computation warranty’s result write the computa-

tion warranty. On the other hand, updates which do not affect the result are not

considered writes. A computation warranty is considered written even if an update

changing the result occurs while the warranty is inactive, ensuring that statistics

are accurate when a new computation warranty is issued later.

4.7 Defending Computation Warranties

As with state warranties, the issuing store must defend against updates which

would invalidate the assertion of a computation warranty before the end of its

term.

A conservative approach to defending computation warranties against updates

would be to delay all transactions that update objects used by the warrantied

computation. This is safe because of the determinism of the warranty computation,

but it likely prevents many transactions from performing updates, hurting write

latency and throughput.

Instead, the system attempts to revalidate affected warranties when each up-

date arrives. The store reruns the warranty computation and checks whether the

result is equivalent to the result stored in the warranty. For primitive values and

references to pre-existing objects (not created by the warranty computation), the

result must be unchanged. Otherwise, two results are considered equivalent if they

46

top(n,i,j)

top(n,i,k0) top(n,k0,j)

top(n,i,k1) top(n,k1,k0)

X... ...

Items

Figure 4.1: Update in tree of computation warranties.

are semantically equal per the equals() method, which may be user-defined, as

in Java.

4.7.1 Incremental Revalidation

In general, computation warranties can be constructed compositionally—a war-

rantied computation may use other warranties, either state warranties or other

(sub)computation warranties. For example, in the top-N example from Section 4.1.2,

if the method top is implemented recursively to process subsets of elements (see

Figure 4.1), the warranty for a call to top depends on warranties for its recursive

calls. The dependencies between warranties form a tree in which computation

warranties higher in the tree depend on warranties lower down, and the leaves are

state warranties.

Any warranty that has not expired must be defended against updates that could

invalidate it. Defense is straightforward when the term of a warranty is within (a

subset of) the terms of all warranties it depends on, including state warranties on

all direct references to objects, because the validity of the higher-level warranty is

47

implied by the defense of the lower-level warranties.

A warranty can have a longer term than some of its dependencies. Updates to

those dependencies may be delayed if they invalidate the computation warranty,

even if the dependencies are expired warranties. However, it is possible to allow

updates to warranty dependencies that do not invalidate the warranty; the value

of dependencies may change without affecting the result. As a result, it is often

feasible to give higher-level warranties longer terms than one might expect given

the rate of updates to their dependencies.

For example, consider the recursive call tree for the method top(n, i, j) shown

in Figure 4.1. If the request to see the top n items among the entire set is very

popular, we would like to issue relatively long computation warranties for that

result. Fortunately, updates to items (shown at the leaves of the call tree) that

change their ranking might invalidate some of the warranties in the tree, but most

updates will affect only a small part of the tree. Assuming that lower levels of

the tree have either leased warranties or relatively short public warranties, most

updates are not delayed much.

4.8 Public Computation Warranties Implementation

Public computation warranties were implemented as an extension of the state war-

ranties implementation discussed in Section 3.9. To simplify the implementation

for defending public computation warranties, the implementation only generates

warranties for computations that involve objects from a single store.4 Also, our

implementation does not use the dissemination layer to distribute computation

warranties.

4Predictive treaties, discussed in Chapter 5, are not limited to single store computations and
are designed to have low overheads for enforcing multistore warranties.

48

4.9 Evaluation

To evaluate public computation warranties, we used two benchmarks: a simple mi-

crobenchmark based on the top-N example described in Section 4.1.2, and the CMS

benchmark described in Section 3.10.2, augmented with some memoized methods

for generated page content and access control checks. The experimental setup was

the same as in Section 3.10.4.

4.9.1 Top-Subscribers Benchmark

This new benchmark program simulates a relatively expensive analytics compo-

nent of a social network in which users have subscribers. The analytics component

computes the set of 5 users with the largest number of subscribers, using the mem-

oized top-N function described in Section 4.1.2. The number of subscribers per

user is again determined by a power-law distribution with α = 0.7. The workload

consists of a mix of two operations: 98% compute the list of top subscribers, corre-

sponding to viewing the home page of the service; 2% are updates that randomly

either subscribe or unsubscribe some randomly chosen user. This example explores

the effectiveness of public computation warranties for caching expensive computed

results.

4.9.2 Course Management System

For the CMS benchmark, we wanted to see if there were benefits or potentially pro-

hibitive overheads when using computation warranties to memoize some common

calls for generated content on various pages.

49

Table 4.1: Top-N benchmark: maximum throughput, latency, and 95th percentile
write delay.

Median 95th pct
Throughput Latency Write Delay

(txn/s) (ms) (ms)
Fabric 17± 5 568± 500 N/A

Public State Warranties 26± 7 1239± 644 623± 387
Public Computation Warranties 343± 14 12± 3 16± 5

Table 4.2: CMS throughput with additional public computation warranties result
highlighted.

System Tput (tx/s) Latency (ms)
JPA 72± 12 211± 44

Fabric 3032± 144 143± 120
Public Warranties 4142± 112 27± 27

Public Computation Warranties 4088± 189 114± 30

4.9.3 Results

For comparison, we ran the top-N benchmark with Fabric, with public state war-

ranties, and with public computation warranties. Because the performance of the

recursive top-N strategy on Fabric and on public state warranties was very poor,

we used an alternate implementation that performed better on those configura-

tions. Table 4.1 shows the average across three runs of the maximum throughput

and the corresponding latency achieved in the system without any operations fail-

ing to commit during a 15 minute period. Public computation warranties improve

throughput by more than an order of magnitude. Since the public computation

warranty is on the value of the top 5 accounts rather than on each individual value

used in computing the result, writes are not delayed as heavily as they are when

using only state warranties.

For CMS, the results are shown with the additional data for the public compu-

tation warranties variant in Table 4.2, again across three trials of the configuration.

Computation warranties only support computations on data from a single store, so

50

we did not compare results with the three store scenario explored in Section 3.10.

CMS was originally designed without the support of computation warranties. The

functions we designated to be memoized turn out not to have a significant impact

on performance—CMS was already designed to keep these computations relatively

cheap to evaluate on each request. However, the bookkeeping for public computa-

tion warranties adds no noticeable overhead.

4.10 Related Work

Many mechanisms for enforcing concurrency control have been proposed in the

literature: locks, timestamps, versions, logs, leases, and many others [57, 42, 58,

86, 16, 40]. Broadly speaking, these can be divided into optimistic and pessimistic

mechanisms. The monograph by Bernstein, Hadzilacos, and Goodman provides a

broad overview from the perspective of databases [17]. Warranties are an optimistic

technique, allowing clients to concurrently operate on shared data.

Haerder [45] divides mechanisms for validating optimistic transactions into “for-

ward” and “backward” techniques. Backward validation is a better choice for the

distributed setting [4], so Fabric uses backward validation: transactions are aborted

in the prepare phase if any object in the read set has been modified.

Traditionally, most systems adopted serializability or linearizability as the gold

standard of strong consistency [78, 17, 46]. But many recent systems have sacrificed

serializability in pursuit of scalable performance. Vogels [107] discusses this trend

and surveys various formal notions of eventual consistency. Much prior work aims

to provide a consistency guarantee that is weaker than serializability; for example,

causal consistency (e.g., [80, 68]) and probabilistically-bounded staleness [12]. Be-

cause this work is focused on stronger consistency guarantees, we do not discuss

this prior work in depth.

51

Leveraging application-level information to guide implementations of trans-

actions was proposed by Lamport [57] and explored in Garcia-Molina’s work on

semantic types [34], as well as recent work on transactional boosting [47] and coarse-

grained transactions [54]. Unlike warranties, these systems use mechanisms based

on commuting operations. A related approach is red–blue consistency [61], in which

red operations must be performed in the same order at each node but blue opera-

tions may be reordered.

Like warranties, Sinfonia [6] aims to reduce client–server round trips without

hurting consistency. It does this through mini-transactions, in which a more gen-

eral computation is piggybacked onto the prepare phase. This optimization is

orthogonal to warranties.

Warranties borrow from leases [40] the idea of using expiring guarantees, though

important differences are discussed in Section 3.2. In fact, the idea of expiring

state guarantees occurs prior to leases in Lampson’s global directory service [59].

We are not aware of any existing system that combines optimistic transactions

with leases or lease-like mechanisms, against which we could meaningfully compare

performance.

A generalization of leases, promises [43, 51] is a middleware layer that allows

clients to specify resource requirements via logical formulas. A resource manager

considers constraints across many clients and issues time-limited guarantees about

resource availability. Scalability of promises does not seem to have been evaluated.

The tracking of dependencies between computation warranties, and the incre-

mental updates of those warranties while avoiding unnecessary invalidation, is close

to the update propagation technique used in self-adjusting computation [1], but

realized in a distributed setting. Incremental update of computed results has also

been done in the setting of MapReduce with Incoop [18].

52

The TxCache system [82] provides a simple abstraction for sharing cached re-

sults of functions operating over persistent data from a single storage node in a

distributed system. As with the Fabric implementation of computation warranties,

functions may be marked for memoization. TxCache does not ensure that mem-

oized calls have no side effects, so memoized calls may not behave like real calls.

Compared to Fabric, TxCache provides the consistency guarantee of the under-

lying system, usually either snapshot isolation or serializability. Both of these

guarantees are weaker than Fabric’s strict serializability.

Escrow transactions [76] have some similarities to computation warranties.

They generalize transactions by allowing commit when a predicate over state is

satisfied. Certain updates (incrementing and decrementing values) may take place

even when other transactions may be updating the same values, as long as the

predicate still holds. Compared to computation warranties, escrow transactions

support very limited predicates over state, and their goal is different: to permit

updates rather than to allow the result of a computation to be widely reused.

4.11 Discussion

Computation warranties realize the generality of the warranty abstraction: time-

dependent assertions on the state of a distributed system. This generalization

proves useful in cases where objects may be frequently updated without affecting

application-level properties across multiple objects. This requires recomputing a

result to check the effects of updates, which introduces new overheads for writes.

Luckily, because computation warranties are compositional, these overheads tend

to be low for updates which do not affect most of a computation tree, only the

affected subcomputations need to be checked.

Computation warranties are beneficial in some cases, as demonstrated by the

53

top-N benchmark. However, as demonstrated in the CMS benchmark, they are

not a general panacea for reducing contention and communication in strongly con-

sistent distributed applications. Computation warranties work best when written

with an appropriate level of composition: a computation should be constructed

using subcomputations with stable results. In the next chapter, I discuss predictive

treaties that leverage novel techniques for selecting subcomputations for assertions

that are stable.

54

CHAPTER 5

PREDICTIVE TREATIES

In the previous chapter, we saw how computation warranties generalize time-

dependent guarantees from explicit values to predicates over the state. The com-

putation warranties presented in Chapter 4 were limited to store-scope predicates,

however. While this is not a fundamental limitation of the computation warranties

abstraction, system-scope predicates present new challenges for ensuring good

performance—enforcing system-scope warranties requires synchronization when-

ever a multistore predicate is recomputed to check if its result has changed.

Treaties, an abstraction used in the homeostasis protocol [87], were designed

with this enforcement overhead in mind. Unlike public warranties, treaties were

not time-dependent and were revocable—treaties improve performance by avoiding

multistore queries but do not remove the need for read validations entirely. Fur-

thermore, treaties were not designed to support arbitrary hierarchical composition

like computation warranties.

In this chapter, we discuss predictive treaties, which extend the original treaties

design with features from computation warranties—time-limited guarantees and

hierarchical structure—as well as a novel generalization to predicates that depend

on time. Predictive treaties are a leased warranty abstraction; like the original

treaty abstraction, predictive treaties are revocable and intended to avoid multi-

store transactions as much as possible.

Like the previous chapter’s computation warranties and the homeostasis pro-

tocol’s treaties, predictive treaties exploit the predictability of computation using

logical predicates over system state. A key design element is the separation of

the computation on system state from the predicate being enforced on that com-

putation. Metrics, computations on the state that predictive treaties guarantee

55

predicates over, measure the expected “distance” to the violation of a predicate

and predict how this distance will change. Similar to the model used to set public

warranty terms discussed in Section 3.7, metrics construct estimates to predict

future updates to this distance. These predictions can be used to avoid remote

data access without harming consistency guarantees that applications rely on.

A novel feature of predictive treaties is that their predicates may be time-

dependent: predictive treaties not only express conditions on the state of the sys-

tem, but also how the state will change as a function of time. For example, if

a metric f(x) computes the amount of stock in a warehouse, a predictive treaty

might guarantee the inequality f(x) > 100 − 5t, where t represents elapsed time

in minutes. Such a treaty would allow this inequality (and any other predicate

it implies) to be evaluated without any distributed communication. Note that a

predictive treaty is not an invariant in the strictest sense, as it is not guaranteed

to hold for all time. Even so, our evaluation shows that time dependence allows

predictive treaties to reduce synchronization by orders of magnitude for some ap-

plications.

Of course, warranties and predictive treaties are not free: there are costs as-

sociated with creating and maintaining run-time objects to represent metrics and

predicates. These costs are magnified when the predicates are over geodistributed

state—communication to use and manage these objects requires high latency com-

munication between nodes and increased contention for client transactions. In a

naive implementation, these costs could be greater than the costs associated with

executing the distributed application itself. To help support better reuse of pre-

dictive treaties and thereby reduce this overhead, we introduce stipulated commit,

a mechanism that allows the programmer to propose updates that are applied

only if doing so does not violate a treaty. As shown in our evaluation, stipulated

56

commit enables building distributed applications using simple predictive treaties

whose performance is competitive with hand-written code.

This chapter explores the design and implementation of predictive treaties as

a primitive for distributed programming. The intuition behind predictive treaties

is outlined with an example application: running an election and tracking the

front-runner. Preliminary results demonstrate that our intuitions can lead to sig-

nificant performance improvements (Section 5.1). Predictive treaties and metrics

are formally described along with how the system ensures they are consistent (Sec-

tion 5.2). We provide a simple interface for programming with metrics and pre-

dictive treaties that abstracts away much of the details for ensuring consistency

and good performance (Section 5.3). Techniques for automatically constructing

low-synchronization policies for enforcing treaty consistency are discussed (Sec-

tion 5.4). Modifications to a standard distributed transaction system for ensuring

consistency and good performance when using treaties are discussed based on our

experience implementing predictive treaties in Fabric (Section 5.5). We demon-

strate that predictive treaties are effective at avoiding coordination using a series

of benchmarks as well as evaluate the usefulness of some key design elements, such

as the prediction model and estimation features (Section 5.6). At the end of this

chapter, I discuss related work (Section 5.7) and some conclusions (Section 5.8).

5.1 Predictive Treaties by Example: Voting

We begin by considering a simple application where predictive treaties prove useful:

a voting system that records and totals the votes for candidates in an election.

Votes arrive at one of some number of geographically distributed voting stations

and must be tallied to obtain candidate totals. The application keeps track of

which candidate is leading—a global property—and makes this information widely

available. While accurate up-to-the-minute winner determination is not a feature

57

of current voting systems, it is paradigmatic of a broader class of applications

requiring tracking of data aggregates [10, 81, 24].

For simplicity, assume there are two candidates, A and B, and two voting

stations, nodes S1 and S2. The two nodes process transactions for casting votes,

vote(A) or vote(B), and query for the current front-runner, winning_candidate().

Voting increments a station-local vote total for the indicated candidate. At station

S1, the vote totals for the two candidates are a1 and b1; at S2, they are a2 and b2.

Front runner queries return which candidate has a greater vote total across both

nodes, returning A when a1 + a2 > b1 + b2, for example.

Because the current winner is a global property that depends on widely dis-

tributed data, any straightforward implementation of winning_candidate() us-

ing conventional serializable transactions will be slow, even if the winner changes

infrequently. Each transaction must check who the new winning candidate is be-

fore committing, and this check requires synchronization among all voting stations

to ensure that the vote totals observed are consistent with the system state. For-

tunately, the state of this application evolves in a predictable way that can be

exploited by predictive treaties to avoid synchronization. In particular, each up-

date changes only one total at a single station. Furthermore, we may reasonably

assume that the overall voting trend is fairly consistent at each station, over sig-

nificant time periods.

5.1.1 Enforcing Predicates with Slack

Suppose A is in the lead, and the application creates a global predicate, stating

winning_candidate() = A, to monitor the current winner. This global predicate

can be enforced using predictive treaties that track the local vote totals at each

station.

58

winning_candidate() = A

m1 +m2 > 0

m1 > r1t+ k1 m2 > r2t+ k2

Figure 5.1: Locally enforceable predictive treaties imply a global predicate. Here
k2 = −k1 and r2 = −r1.

With A currently in the lead, the global predicate is equivalent to the predicate

(a1− b1) + (a2− b2) > 0: the total of the margins must be positive. Defining local

margin variables m1 = a1 − b1 and m2 = a2 − b2, this predicate can be written

more simply: m1 +m2 > 0.

The quantity m1 + m2 changes by 1 on each vote, so it tracks the minimum

number of votes that might invalidate the global predicate. We call this quantity

the slack of the global predicate, because it measures how far the global predi-

cate is from being invalidated. The global predicate can therefore be enforced by

identifying values k1 and k2 such that the inequalities m1 > k1 and m2 > k2 hold

and the global slack k1 + k2 is nonnegative. As long as the local predicates hold

at all of the nodes, no synchronization is required. If an update violates a local

predicate, then synchronization among the nodes is required, either to invalidate

the global predicate or to establish new local predicates that can then be enforced.

However, consistency is not threatened by the falsification of local predicates: the

system falls back to synchronization to ensure consistency when predictive treaties

no longer hold.

Ignoring questions of how to obtain local predicates and of how to choose

values for k1 and k2, what we have described thus far corresponds to the approach

taken in prior work [87]. We show next how to further improve performance

using predictive treaties, which generalize static predicates with mechanisms for

59

predicting the evolution of system state in order to reduce synchronization.

5.1.2 Time-Dependent Treaties

Assume voting stations are associated with populations that each exhibit their own

overall preference for the candidates. Further, for simplicity, assume that voters

cast votes independently with different biases at the two sites. In this case, there

may be some variation in the local margin observed at each node, but a trend is

likely to be observable over a long series of votes. For example, if the population at

node S1 is split 60–40 for candidate A, and an equal-sized population at node S2

is split 48–52, then the margin for A at S1 is likely to increase over time, whereas

the margin for A at S2 is likely to (more slowly) decrease over time. In this case,

we say that S1 is a positively biased node, because its updates tend to increase

the slack of the global predicate. Conversely, S2 is a negatively biased node: its

updates tend to decrease the slack of the global predicate. Assuming that voting

patterns do not change over time, it is likely that the total bias across all nodes

will be positive, meaning that the global predicate is unlikely to be falsified soon.

Note that the assumption of independence of voting does not need to hold

perfectly. What is key is that there are predictable trends over time periods that

are long enough to be useful for reducing synchronization. If votes are correlated

with time—for example, if B voters tend to vote later than A voters—then the

trend may depend on time, and global bias could become negative as the trend

switches.

We can take advantage of these underlying trends by creating time-dependent

treaties that automatically track the evolution of system state. Suppose that the

nodes have the biases above (the system is positively biased), and for simplicity,

that votes arrive at an average rate of one vote per time unit at each site. Then

60

Time (t)

L
o
ca
l
M
ar
gi
n
m
(s
) S1 Margin S2 Margin

S1 Treaty S2 Treaty

Figure 5.2: Time-dependent predictive treaties and corresponding local vote mar-
gins over time.

the expected rate of increase in global slack from node S1 is 0.2 votes per time

unit, whereas S2 is expected to decrease global slack by 0.04 votes per time unit.

We can then define local predicates that incorporate these slack velocities. For

some constants k1, k2, r1, and r2, node S1 enforces a local predicate—a predictive

treaty—with the form m1 > r1t + k1, and S2 enforces m2 > r2t + k2. If the sum

k1 +k2 is no larger than the initial global slack and the sum r1 + r2 is nonnegative,

the conjunction of these local treaties enforces the global treaty, as depicted in

Figure 5.1.

The parameters r1 and r2 allow building slack velocities into the local predicates

with the effect that slack is continuously transferred between nodes without any

synchronization. If r1 < 0.2 and r2 < −0.04 (with r1 + r2 ≥ 0 as before), the local

predicates at S1 and S2 can remain true indefinitely, despite the negative bias of

S2. Specifically, if we choose r1 = 0.12 and r2 = −0.12, local slack is expected to

accumulate, equally fast, at both S1 and S2.

An example run of this scenario is shown in Figure 5.2, plotting the two local

margin values and corresponding treaty lower bounds over time. The upward slope

of S1’s treaty reduces the slack at S1. This slack reduction allows S2’s treaty to

increase slack at S2, sloping downward. The overall effect is a continuous transfer

61

103 104 105

0

0.2

0.4

0.6

0.8

1

Milliseconds before first synchronization

F
ra

ct
io

n
of

T
ri

al
s

Static equal
Static optimal
Predictive treaties

Figure 5.3: CDF of time until first synchronization under three different slack-
allocation strategies. With predictive treaties, less than 1% of runs synchronize.

of slack from S1 to S2. The sum of the two treaty bounds is always equal to zero,

so their conjunction always implies that the total margin is greater than zero.

Of course, it would be awkward for programmers to have to choose values for

parameters like ri and ki. Fortunately, they do not need to make this choice. The

predictive treaties framework selects them automatically—see Section 5.4.2.

5.1.3 Preliminary Evaluation

To see the potential performance benefits of predictive treaties, consider the re-

sults from a distributed implementation of the two-station scenario just described,

shown in Figure 5.3. (Section 5.6 discusses this benchmark and variations on it in

more detail.) In this experiment, stations receive 100 votes per second with each

vote selecting a candidate randomly according to the distribution in preferences

associated with the station; so at S1 for example, each vote transaction has a 60%

chance that it will be a vote for candidate A. After 30 seconds of voting, the system

creates a treaty which asserts the current front-runner and then continues to run a

query every 100ms for the up-to-date front-runner. We then measure the time after

62

the treaty was created until the application next synchronizes during either a vote

or query transaction—the distribution of times for this first synchronization acts a

proxy for the distribution of times between synchronizations in the system.1 The

figure compares three strategies for avoiding synchronization, showing a cumulative

distribution of times across 100 trials for each strategy. The dotted red line shows

the result when dividing slack equally between the nodes, in a manner similar to

a baseline used by some previous work [26, 10]. The dashed green line shows the

result when using knowledge of the workload to optimally give most of the slack to

the negatively biased node; this strategy, which almost doubles the median time

to first synchronization, is most similar to the homeostasis approach [87], which

uses workload data to approximate the optimal static division of slack. However,

predictive treaties reduce synchronization even more dramatically, as shown by the

solid blue line in the figure. Synchronization is usually avoided entirely, improving

significantly on even the best possible static division of slack.

5.1.4 Hierarchical Treaties

A typical voting system would have more than two voting stations. The approach

sketched above can be generalized directly to an arbitrary number of nodes by

dividing up slack and slack velocity among all participating nodes. However, this

approach does not scale well: the rate of synchronization increases because there

are more predictive treaties that can individually fail, and the cost of synchro-

nization also increases because more nodes need to achieve consensus on the new

predictive treaties to be enforced subsequently.

A better alternative is to enforce predictive treaties hierarchically, similar to

1The two distributions are not identical, however. With the stable voting patterns in this
experiment, all three strategies take more and more time for each subsequent synchronization
because the margin difference (slack) will grow.

63

winning_candidate() = A

∑
imi > 0

m1 +m2 > r1t+ k1 m3 +m4 > r2t+ k2

m1 > r1,1t+ k1,1 m2 > r1,2t+ k1,2 m3 > r2,1t+ k2,1 m4 > r2,2t+ k2,2

Figure 5.4: Hierarchical predictive treaties. Interior nodes allow the system to
avoid propagating synchronizations to the entire system when they cannot be
avoided.

the top-n computation in Chapter 4. As described above, a predicate of the form

m1 +m2 > 0, where m1 and m2 are the margins at the two nodes, can be enforced

via predictive treaties of the form m1 > r1t + k1 and m2 > −r1t − k1. But this

strategy can be generalized. Assertions of the form mi > rit + ki can themselves

be enforced recursively via lower-level predictive treaties at other nodes.

Hence, we can organize the voting stations into a tree, like the one in Figure 5.4,

in which connected nodes, especially near the leaves of the tree, are located near

each other to reduce communication latency. Each tree node enforces a predictive

treaty. Leaf nodes accept votes that update state and that potentially violate the

predictive treaty which the node is enforcing. Interior nodes enforce predictive

treaties of the same form by negotiating predictive treaties with their child nodes

based on the relative bias of those nodes. Slack and velocity are distributed from

the root downward in such a way that predicate failures occur infrequently and

when they occur, usually do not propagate changes high into the treaty tree.

As the results in Section 5.6 show, hierarchical predictive treaties allow syn-

chronization to be localized to just part of the system, involving relatively few

nodes that are connected with relatively low latency.

64

5.2 Predictive Treaties and Metrics

We now present our approach in more formal manner, introducing predictive

treaties as well as metrics. The system enforces the consistency of treaties used in

a distributed application by monitoring for changes to metrics and treaties.

5.2.1 Predictive Treaties

A predictive treaty is a leased warranty that is both time-varying and time-limited

with system-scope predicates. A predictive treaty’s predicate is an expression on

the value of a metric computation and the current time:

predicate︷ ︸︸ ︷
φ(m(s)︸ ︷︷ ︸

metric

, t) until

time limit︷ ︸︸ ︷
texpiry (5.1)

The predicate is guaranteed to be true until the associated expiry time has passed

or until the treaty is explicitly retracted by a transaction, updating the associated

expiration time.2 Note that these predicates are not necessarily invariants of the

system state, and may only hold briefly.

The components of the treaty are as follows:

• m : S → τ is a metric, which represents a computation on a system state

s ∈ S, with a result of type τ .

• φ : τ ×T→ B is a boolean predicate over the metric’s value and the current

time t.

• texpiry is the expiry time, after which the predicate φ is no longer guaranteed

to be true.

2Note that this is a difference with computation warranties, which cannot be retracted. Be-
cause predictive treaties can be retracted, they do not avoid read prepares.

65

The general form of predictive treaty (5.1) is a predicate over both the state s and

time t. Time is left out of the metric, and is therefore treated differently from

other parts of system state. This simplification is useful because the system has

no control over how time evolves.

The voting example in Section 5.1 demonstrates threshold treaties, in which

the predicate φ checks a time-dependent vector threshold against a vector-valued

metric:
predicate φ︷ ︸︸ ︷

~m(s)︸ ︷︷ ︸
metric

≥ ~b(t)︸︷︷︸
boundary

until

time limit︷ ︸︸ ︷
texpiry (5.2)

Here, the metric type τ is Rn for some number of dimensions n. For the treaty to

hold, the predicate’s inequality ~m(s) ≥ ~b(t) must hold componentwise; effectively,

the predictive treaty enforces a conjunction of n scalar constraints that share an

expiration time.

Threshold treaties model two intuitions from Section 5.1:

• To enforce distributed assertions with low synchronization, we use local as-

sertions that are “far” from being falsified. The metric represents the current

system state as a point in Rn that is compared with a boundary ~b(t). When

the metric’s location is far from the boundary, the treaty is similarly far from

being falsified.

• Slack can be implicitly shifted between nodes by having their treaties vary

with time. The boundary term ~b(t) shifts over time to either reduce or

increase slack.

Threshold treaties have a variety of uses and can be maintained with low syn-

chronization overhead. Linear threshold treaties, in which the boundary ~b(t) de-

pends linearly on t, are particularly useful, as in the voting example.

As in prior systems [63, 64, 4, 5, 25, 91], we rely on loosely synchronized clocks.

66

−1 1 2 3 4 5 6 7 8 9 10

2

4

6

8

m(s)

m(s) ≥ 0.5t+
2

tfail

Time (t)

M
et
ri
c
va
lu
e
m
(s
)

Figure 5.5: A predictive treaty falsified by time passing. Although the metric m(s)
never changes value, the treaty is eventually falsified at tfail.

We account for possible skew ε between clocks by enforcing the most conservative

interpretation of a predictive treaty—i.e., assume that clocks may differ by ε.

5.2.2 Enforcing Predictive Treaties

We say that a predictive treaty created at time tcreate holds if for all times t ∈

[tcreate, texpiry), the predicate φ(m(s), t) holds. In other words, a predictive treaty

holds if, at any time before texpiry after its creation, a distributed application can

use it in place of a strongly consistent computation that explicitly checks the

predicate.

A predicate φ(m(s), t) that currently holds may be falsified (i.e., stop holding)

in two ways:

• An update to the system state may change the value of the metric m from

value m(s) = v to a new value m(s′) = v′, such that φ(v′, t) is false.

• As time passes, the predicate may become false due to its dependence on t.

In the case of threshold treaties, ~b(t) can grow with time and become larger

than the value of ~m(s) in the current system state, as shown in Figure 5.5.

For a given system state, the future time tfail when this second scenario occurs, if

67

T2

φ(m(s),t)

sT1

Figure 5.6: System state s evolves within the intersection of local predictive
treaties, enforcing global predicate φ(s).

any, can be determined from the current value of m(s), assuming ~b(t) is suitably

well-behaved. Therefore, to ensure that a predictive treaty holds, the system

ensures that texpiry ≤ tfail, if it exists. This will falsify the treaty when texpiry is set

to earlier than the current time.

As a form of computation warranty, there are two choices for enforcing predic-

tive treaty assertions: either directly or using other predictive treaties.

In the direct method, the system enforces predictive treaties by recomputing m

and update texpiry as needed on each update to the state s referenced by the metric

m. However, recomputing m can be expensive and may require synchronization if

it reads state from more than one node.

The alternative enforcement strategy, using other predictive treaties, avoids this

synchronization. In this case, the system enforces multiple local subtreaties that in

conjunction imply the original, higher-level treaty. The subtreaties are local in the

sense that they depend on state that is localized to a subset of the state referenced

by the treaty it helps to enforce. These local subtreaties can be enforced without

synchronization with nonlocal nodes. This approach is illustrated in Figure 5.6,

where a global predicate φ(m(s), t) is enforced using subtreaties T1 and T2. As

68

long as system state s stays within the intersection of T1 and T2, it also satisfies

φ(m(s), t). Using subtreaties to enforce a predictive treaty, texpiry only needs to

be updated for the original predictive treaty if the minimum expiration time of

the subtreaties has become earlier than texpiry. Hence, the system requires less

synchronization if subtreaties are chosen so that the minimum of their expiration

times is unlikely to change, despite changes to the state read by their metrics.

5.2.3 Metrics

The metric in a predictive treaty is an object that tracks the value of a computation

over stored state. The implementation of a metric may also track statistics for

modeling how this value evolves over time. These update statistics can help predict

future changes and, as a result, enable estimation of how long the predicate in the

treaty will hold. We discuss specifics of a statistical model used for threshold treaty

predictions in Section 5.2.4.

There are two kinds of metrics, direct and derived:

Direct metrics Direct metrics are computed directly from the state of the sys-

tem, and are updated as the system state evolves. Recall that in the hierarchical

voting system example, there is a tree of predictive treaties. Each leaf node in

the tree maintains a direct metric for the margin observed at that node. As votes

come in, changing the margin, the metric and its estimated statistics are updated.

Derived metrics Derived metrics are used for hierarchical predictive treaties.

They depend on other metrics. In the hierarchical voting system, each interior node

maintains derived metrics, which in this case are aggregate margins for the subtree

at that point, like the node labeledm1+m2 in Figure 5.1. To avoid synchronization,

the state of a derived metric is constructed using the state of its submetrics and

69

is not updated until nodes are otherwise required to synchronize. When a node

maintaining a derived metric synchronizes with the nodes maintaining the source

metrics, the statistics for the source metrics are combined to construct statistics

for the derived metric.

The hierarchy created using derived metrics creates a metrics tree, with direct

metrics as the leaves and derived metrics as the internal and root nodes. Metrics

trees are analogous to abstract syntax trees for representing program structure in

compilers or logical plans in databases; their structure guides the system when

automatically creating subtreaties.

5.2.4 A Prediction Model for Metric Updates

Accurate prediction of the system trajectory depends on tracking not only the

current value of metrics, but also other attributes. For threshold treaties, the

expected metric velocity (that is, rate of change in Rn) allows the system to predict

how long it will take for a given predictive treaty to fail. This prediction allows

choosing predictive treaties at multiple nodes that allocate slack so that the earliest

predictive treaty violation is expected to happen as late as possible.

Of course, system state does not typically exhibit perfectly predictable behav-

ior. To predict the value of a metric, some model of its behavior is needed. If the

model is inaccurate, it can harm performance, but not consistency.

We have explored a simple model for numeric metrics, as a random variable

M that is the sum of two processes: a predictable linear process and a scaled

Brownian process [28] that represents the accumulation of random variation. The

variable M is defined as M = m0 + vt + σBt, where the linear process has value

m0 at time t = 0 and moves at constant velocity v. The Brownian process σBt at

time t has a Gaussian distribution with a mean of 0 and a standard deviation of

70

σ
√
t. A numeric metric is therefore characterized by three parameters: m0, v, σ.

In Section 5.4.1, we discuss how we estimate these parameters for metric objects

based on updates observed by the system.

For example, in the voting example of Section 5.1.2, at site S1 (where votes are

split 60–40), the margin is a Markov chain that is approximated well by parameters

m0 = 0, v = 0.2, and σ = 0.98.

If underlying system state changes in an approximately linear way, it is reason-

able to use a linear model for the nonrandom component of the metric; we have

no evidence that more complex models of metric behavior are worthwhile. Work

in settings with weaker consistency needs has found that linear models often work

well in practice, with diminishing returns for more sophisticated models [37]. A

larger class of functions could be captured by including a transformation in the

metric, however. For example, a quantity expected to vary exponentially over time

can be converted into a linear metric by using the logarithm of the quantity as the

metric. Quantities expected to vary polynomially could be similarly transformed

to more nearly linear behavior.

5.2.5 Expiration

The general form of a predictive treaty in Equation (5.1) includes an expiration

time texpiry. This component is useful for enforcing application-level predicates that

include an expiration time, as in the case of the warranty design in the previous

chapters. However, as noted in Section 5.2.2, there is a fundamental reason why

expiration times are needed.

As discussed in Section 5.1, a time-dependent predictive treaty can transfer

slack continuously from positively biased local treaties to negatively biased ones.

A threshold predictive treaty is positively biased at time t if the term b(t) is

71

−1 1 2 3 4 5 6 7 8 9 10

5

10

m(s)
∝ σ
√
t

m(s) ≥ 0.5t+
2 tfail

thedged

Time (t)

M
et
ri
c
va
lu
e

Figure 5.7: Setting a treaty’s expiry based on predicted trajectory. The red
parabolic curve suggests the envelope of likely metric values over time. Hedging
the expiration time to thedged leaves room for negative updates.

increasing over time, presumably because the workload updates are also positively

biased. In the simple case of a linear bound b(t) = rt+ c, the sign of r determines

the treaty bias.

Predictive treaties that are not positively biased remain valid in the absence of

updates to the state s because the bound b(t) remains fixed or moves away from

the metric value. Therefore, these predictive treaties can be enforced by forcing

synchronization when updates arrive that would require them to be retracted.

This synchronization may cause the global assertion to fail but its failure will be

serializable and observations of state will remain consistent.

Positively biased predictive treaties, however, build in an expectation that in-

coming updates generate slack in the underlying metric. Consequently, if updates

cease, a positively biased treaty becomes invalid at a time tfail simply through the

passage of time. In general, such invalidations are unavoidable for positively biased

treaties in the absence of updates.

For example, Figure 5.7 shows a predictive treaty with the formm(s) ≥ 0.5t+2,

corresponding to the gray diagonal line. The metric, shown in blue, is required to

stay above this line. At time 0, the metric has value 6. Absent any updates, the

72

treaty becomes invalid at time tfail = 8, so synchronization-free enforcement of the

treaty requires that the value of texpiry be at most 8.

Hedging While it is safe to use 8 as texpiry in this example, updates that cause

the metric’s value to drop below its initial value would require synchronization

to commit. Any reduction below the initial value introduces the potential for the

predictive treaty to become false earlier than the initially promised expiration time

of 8. To allow some slack-reducing updates to occur without synchronization, the

expiration time can be artificially shortened, as suggested by the red dashed line

in the figure, corresponding to the time thedged. The amount of expiration-time

hedging should depend on the noise parameter σ, to balance the cost of making

the expiration time too short against the possible cost of synchronization arising

from slack-reducing updates. In our implementation, we use 3σ to account for

three standard deviations of noise.

Asynchronous extensions As time passes, a node managing a positively bi-

ased predictive treaty expects updates that increase a treaty’s expiration time.

Importantly, these extensions can be performed by the system periodically, with-

out requiring the client to synchronize, and communicated asynchronously to other

nodes using the treaty.

Whenever a transaction performs updates that potentially allow a treaty’s ex-

piration to be extended—either a metric update that moves away from a treaty

bound or an extension to a subtreaty’s expiry—an asynchronous extension mes-

sage is sent to the node managing the treaty. At any time, usually some time after

receiving an extension message, the managing node can run a transaction to ex-

tend the treaty’s expiry. This transaction may trigger further extension messages

to other nodes managing treaties that depend on the extended treaty.

73

There is no need to acknowledge extension messages; a lost or delayed message

may lead to unnecessary synchronization but cannot cause inconsistency. Process-

ing extension messages is also discretionary. To avoid gratuitous overhead, the

receiving node can wait until just before the previously advertised expiration time

to attempt an extension of the treaty and, if successful, sending out extension

messages. Because such messages do not incur round-trip delays and do not delay

client transactions, we do not consider them to be synchronizations.

5.3 Using Predictive Treaties

Predictive treaties and metrics enable complex, efficient implementations for dis-

tributed applications. However, the API is simple and intuitive.

5.3.1 Programming with Treaties and Metrics

Part of the appeal of predictive treaties is that they support a simple programming

interface. To demonstrate this simplicity, Figure 5.9 gives the top-level code for

the voting example, using several supporting definitions from Figure 5.8. The

function winning_candidate() defines the top-level computation: it computes

the election winner while memoizing the result by generating a treaty that can

be used later to check the result. Under the covers, the implementation enforces

the underlying predictive treaties to keep this result valid for as long as possible,

avoiding recomputation and synchronization.

The method winning_candidate() computes a Metric for the margin be-

tween the candidates across a set of voting stations, using a helper method margin()

that builds a metrics tree by partitioning the voting stations and recursively com-

puting the sub-margins for those stations, combining the results into a single met-

74

1 interface Treaty {

2 /* For client use */

3 boolean valid();

4 }

5

6 interface Metric {

7 /* For client use */

8 double value();

9 // Constructs a SumMetric

10 Metric plus(Metric other);

11 // Constructs a ScaledMetric

12 Metric times(double scalar);

13 // Syntactic sugar for adding a -1 scaled Metric

14 Metric minus(Metric other);

15 // Constructs a MinMetric

16 Metric min(Metric other);

17 Treaty getTreaty(TreatyStatement stmt);

18

19 /* For internal use */

20 double velocity();

21 double noise();

22 Set<Treaty> policy(TreatyStatement stmt);

23 }

24

25 interface TreatyStatement {

26 /* For internal use */

27 boolean check(Metric m);

28 }

Figure 5.8: Treaty and Metric interfaces.

ric using the plus operation. Depending on the sign of the resulting margin,

winning_candidate() then uses getTreaty() to generate a predictive treaty for

either the returned metric or its negation (using the times(-1) operation). The

parameters to the call to getTreaty() represents the lower bound on the value,

set to 0 here. Figure 5.10 shows the tree of metrics used in the voting example.

The association between the returned winner and the treaty can be treated as

enforcing assertions of the form f(s) = y.

75

1 TreatyStatement zeroBound = new LowerBound(0);

2

3 /* Return the current winner and a treaty that implies

4 * this result still holds.

5 */

6 Pair<String, Treaty> winning_candidate(String u, String v) {

7 Metric diff = margin(u, v, allStations);

8 if (diff.value() >= 0) {

9 return new Pair<>(u, diff.getTreaty(zeroBound));

10 }

11 return new Pair<>(v, diff.times(-1).getTreaty(zeroBound));

12 }

13

14 /* Return the metric which computes the margin between

15 * candidates u and v across the given districts.

16 */

17 Metric margin(String u, String v, List<Station> ds){

18 int n = ds.size();

19 if (n == 1) {

20 Station d = ds.get(0);

21 return d.votesFor(u).minus(d.votesFor(v));

22 }

23 int mid = n / 2;

24 Metric fst = margin(u, v, ds.subList(0, mid));

25 Metric snd = margin(u, v, ds.subList(mid, n));

26 return fst.plus(snd);

27 }

Figure 5.9: Voting example code using treaties.

plus

minus

votesFor(u)

SumMetric

DirectMetric

votesFor(v)

DirectMetric

SumMetric

SumMetric

* -1

…
ScaledMetric

Figure 5.10: Metrics tree created by example code.

76

Figure 5.8 defines the interfaces for objects of type Treaty, TreatyStatement,

and Metric. After a treaty is created, valid() returns true until the treaty

expires. Metric objects provide methods for computing their value(), for esti-

mating their velocity() and noise(), and for obtaining derived metrics. The

method policy(stmt) automatically creates subtreaties to enforce a predictive

treaty asserting the given statement on the metric’s value(), using techniques

discussed below in Section 5.4.2. If no subtreaties are returned, the statement is

enforced directly.3

In our example, votes at an individual station are tracked using metrics that

can be updated directly by the application. Votes across stations are tracked using

SumMetrics and ScaledMetrics (produced by the plus and minus operators),

which use the methods velocity() and noise() to divide up slack proportionally

between their sub-metrics.

5.3.2 Stipulated Commit

To reduce the overhead of creating and maintaining predictive treaties, it can be

better to beg forgiveness than to ask permission. The predictive treaties pro-

gramming interface converts logical conditions that the programmer wants to test

into treaties that are monitored and enforced. However, creating and maintaining

a treaty (“asking permission”) has a cost that is not worth paying if the treaty

cannot be reused enough. Unfortunately, programs as written often test logical

conditions that are not worth promoting into treaties.

One problematic pattern arises when an application performs certain updates

only if a postcondition would hold afterward, but where the success of the update

depends on varying input. For example, in a banking application, a withdrawal

3This is a simplified presentation of the implementation, which returns different Policy values
for different enforcement strategies.

77

from an account might be allowed only if the final account balance is nonnegative.

Traditionally, a programmer would enforce such a postcondition by checking a

sufficiently strong precondition before performing the update. For example, the

banking application might guard the withdrawal with code like the following:

1 if (balance - amount >= 0)

2 balance -= amount;

This code does not expose a reusable predicate: first, the guard condition depends

on the quantity amount, which may vary from request to request; second, when the

balance is low, the guard condition may be immediately falsified by the update.

As another example, consider implementing the stock-order transaction from

a sharded version of the TPC-C benchmark (cf. [87]). Each item in the inventory

has some amount of stock that is depleted as orders are processed. A direct

application of treaties would use a treaty ensuring there is enough stock for the

order amount before decrementing the stock. However, this can lead to many

treaties that are specific to each possible order amount: orders of five items would

check a treaty ensuring there are five items while orders of three items would check

a corresponding three-items-left treaty.

To make reusable treaties easier to express, the programming interface allows

the specification of stipulations, postconditions that must hold after some set of

updates is applied. The updates are performed optimistically, but if the resulting

state does not satisfy the stipulations, the updates are rolled back and are not

committed (“begging forgiveness”). The application then has the opportunity to

perform alternative actions. In the banking example, it is enough to check that

a treaty of the form balance ≥ 0 would still be valid after the update to the

balance. This predicate is reusable because it does not mention the amount being

withdrawn, and it is never invalidated by withdrawals.

78

1 Metric balance_us , balance_eu;

2 Metric balance = balance_us.plus(balance_eu);

3 int withdraw(int amount) {

4 atomic {

5 balance.requireStipulation(new LowerBound(0)));

6 // withdraw from the appropriate shard

7 withdraw_locally(amount);

8 return amount;

9 } catch (StipulationFailure f) {

10 return 0;

11 }

12 }

Figure 5.11: Using stipulated commit to withdraw money from a sharded balance.

Actual code for the withdrawal transaction using stipulated commit is shown

in Figure 5.11. In this code, the account balance is sharded across two sites in

balance_us and balance_eu, which may become negative as long as their sum

(balance) remains nonnegative. The keyword atomic starts a nested transaction

that aborts and rolls back all of its updates if an exception occurs.

In cases where an existing treaty already asserts the postcondition, it is enough

to check that the enforcement logic, described in Section 5.2.2, does not deter-

mine that the treaty is falsified by this transaction. Thus, stipulated commit uses

treaties to avoid synchronization using the same underlying mechanisms. On the

other hand, if there is no active treaty for a satisfied postcondition, a treaty is

automatically created and activated, ensuring that later transactions can avoid

synchronization in their postcondition checks.

While stipulated commit relies on a rollback mechanism, it has a subtle dif-

ference from previous mechanisms for nested transactions: reads performed when

checking the treaty statement postcondition must be treated as part of the parent

transaction, even if the postcondition fails. This ensures the serializability of ap-

plication logic that depends on the failure. For example, in our TPC-C implemen-

79

tation this ensures that NewOrder transactions do not refill the stock unnecessarily

due to inconsistent reads.

The core insight of stipulated commit is that programmers should be encour-

aged to use treaties which are likely to be used across many transactions. Directly

specifying treaties for postconditions shared across large varieties of updates helps

produce reusable treaties: many transactions may perform slightly different up-

dates but all require the same postcondition for the effects. This insight could be

captured in alternative designs. For example, an alternative design could provide

an interface that better mirrors the traditional if statement from the banking

example. However, we opted for this interface because it required fewer changes

to the compiler and allowed us to leverage existing nested transaction support.

5.4 Automatically Creating Low-Coordination Treaties

As mentioned above, predictive treaties are automatically enforced by the system

using strategies driven by estimates of the update model presented in Section 5.2.4.

Here we discuss how the model parameters are estimated and how these estimates

are used by the implementation to choose a strategy to enforce a treaty predicted

to synchronize as little as possible.

5.4.1 Estimating Model Parameters for Metrics

In our system, numeric direct metrics create estimates of v and σ. These estimates,

in addition to the current value m0, are used by the system when constructing

predictive treaties. Derived metrics construct estimates of v and σ by appropriately

transforming estimates from their children.

In the case of constructing direct metric parameter estimates, we treat this as

80

a matter of estimating distribution parameters using each update as a new sample.

The model assumes that each update to a direct metric’s value comes from the

random variable

dx = v dt+N (0, σ2 dt)

where dx is the change in value, dt is the time since the last observation, v is

the velocity parameter, σ is the noise parameter, and N (0, σ2 dt) is a normally

distributed random variable with a mean of zero and variance of σ2 dt. Rearranging

the distribution to get v, we have

v =
dx−N (0, σ2 dt)

dt
.

Since N (0, σ2dt) has a mean of zero, we expect that an estimate of dx
dt

gives an

estimate of v. Similarly, rearranging to get an expression of σ, we get

N (0, σ2 dt) = dx− v dt.

This implies that estimating the variance of dx − v dt gives an estimate of σ2 dt,

so σ is estimated as the square root of the variance dx− v dt divided by dt.

Direct metrics track sampled means of dx, dt, and dx − v dt, as well as the

sampled variance dx − v dt to construct the v and σ estimates.4 In our system,

we use exponentially weighted moving averages (EWMA) and an exponentially

weighted moving variance for these sample statistics [21, 49, 72]. With EWMA,

past behavior of the metric is forgotten over time, allowing the system to more

rapidly adapt to shifts in the workload behavior at the price of lower accuracy for

stable workloads. In our implementation, we use a parameter of α = 0.001 for

EWMA, keeping an effective window of 1,000 samples for each statistic.

To ensure that our estimation techniques are reasonably accurate across a va-

riety of underlying update distributions, we simulated using our estimation tech-

niques on various scenarios and looked at the relative error between the estimates

4Here we use the current estimate of v in the dx− v dt terms.

81

Table 5.1: Mean relative error of parameter estimates for various scenarios. Rel-
ative errors are averaged across 1,000 trials with 10,000 updates each. Each row
shows a different distribution for the amount the value is updated after each in-
terval.

Fixed Interval Exponential Interval
(dt = 2) (E[dt] = 2)

Brownian (v = 1, σ2 = 0.5) verr = 0.91%, σ2
err = 2.4% verr = 0.87%, σ2

err = 3.5%
Constant (+1) verr = 0.0%, σ2

err = 0.0% verr = 1.8%, σ2
err = 4.0%

Binary (25% +1, 75% -1) verr = 3.2%, σ2
err = 2.1% verr = 3.7%, σ2

err = 2.4%
Gaussian (µ = 1, σ2 = 0.5) verr = 1.3%, σ2

err = 2.4% verr = 2.3%, σ2
err = 3.5%

produced for velocity and noise and the actual values based on the underlying

distribution. We looked at a total of 8 scenarios across 2 distributions for intervals

between updates (dt) and 4 distributions for update values (dx). For intervals,

we looked at scenarios where dt was a constant value and scenarios where the dt

followed an exponential distribution with a given target mean value. For updates

we looked at cases where the underlying dx were selected to following one of the

following distributions:

• Brownian motion with drift, using dt to choose dx. This allows us to validate

that we can recover the modeled distribution’s parameters.

• Constant valued updates. This simulates scenarios like simple counter incre-

ments.

• Binary updates, where updates are selected from a discrete distribution

across +1 and -1. This simulates a scenario similar to how the vote margin

changes in the voting scenario.

• Gaussian updates, with set mean and variance. This captures a reasonable

alternative assumption about a value’s update distribution: in this case,

values are independent of the interval between updates.

The average relative error of the velocity and noise parameter estimates across

1,000 trials with 10,000 updates sampled in each trial is given in Table 5.1. The

82

relative error is no more than 4% across all scenarios. These results indicate two

points:

1. Our estimation is reasonably accurate at recovering the original parameters

when the underlying distribution is a Brownian motion with drift.

2. When the underlying distribution for updates is some reasonable alterna-

tive, the estimation obtains reasonably accurate parameters for treating the

distribution as if it were truly a Brownian motion with drift.

5.4.2 Automatically Choosing an Enforcement Strategy

When using predictive treaties, programmers are only required to specify the top-

level treaties used by their application. Any subtreaties used to enforce that treaty

and avoid synchronization are automatically chosen by the runtime system. Sub-

treaties are chosen by a recursive procedure that starts from the top-level treaty

metric and works down the metrics tree. At each derived metric m (a parent

node in the metrics tree), subtreaties are chosen for the submetrics using a two-

step procedure similar to syntax-directed translation in compilers [7] and to query

planning in databases [85]. Our work has explored the case of a particular choice

of prediction model (Brownian motion with drift), derived metrics (sums, scaling,

minimums, and maximums), and predicates (equalities and inequalities on numeric

data). However, this approach generalizes to other choices of prediction model and

further kinds of derived metrics and predicates.

First, our implementation obtains templates for the subtreaties, similar to the

local treaty templates used in the homeostasis protocol [87]. Templates are pred-

icates with parameters to be filled with specific values. The subtreaty templates

are determined by calling the policy method on the derived metric, passing in

the and the form of its treaty’s predicate. For example, if the derived metric is a

83

≥ r3t+ b3≥ r2t+ b2≥ r1t+ b1

≥ rt+ b m1 +m2 +m3

m3m2m1

Figure 5.12: During the first step of treaty generation, subtreaty predicate tem-
plates are constructed by the derived metric based on the predicate being asserted.
In the second step, the template parameters are filled by the system to using a
numerical solver to select parameters that maximize the expected time until any
of the subtreaties are expected to synchronize.

sum and the treaty’s predicate is a threshold, as in the voting example, the system

may choose subtreaty templates specifying thresholds on each summand. Thus, in

the voting example in Section 5.1, each subtreaty γ uses a template of the form

“≥ rγt+ kγ”, with parameters rγ and kγ, as diagrammed in Figure 5.12. Alterna-

tively, if the derived metric is a minimum of other metrics and the treaty predicate

is the strict equality min(x, y, z) = 5, the templates chosen by the system could

be an equality for the current minimum metric argument, and thresholds for the

other arguments. If x were the current minimum argument, subtreaty templates

would take the form x = xγ, y ≥ yγ and z ≥ zγ. Extending the system to support

additional derived metrics and predicates requires updating the policy method

implementations to appropriately handle new combinations.

Second, the parameters in subtreaty templates are filled with specific values

chosen by solving a constrained optimization problem. This problem corresponds

to maximizing the predicted time until any subtreaty will become invalid, subject

to constraints that ensure the subtreaties imply the original treaty holds. There

are two sets of constraints used in the problem, projected expiry constraints and

correctness constraints. The resulting constrained optimization problem ensures

the subtreaties chosen are expected to avoid synchronization as long as possible

84

according to the prediction model.

Projected expiry constraints determine predictions for how long each subtreaty

will hold based on a prediction model, like the one discussed in Section 5.2.4.

Extending support for additional predicates or alternative prediction models for

metric values requires determining new projected expiry constraint equations.

Correctness constraints ensure that the selected parameters produce predicates

on the submetrics that, in conjunction, imply the original predicate on the derived

metric holds. Extending support for additional combinations of predicates and

derived metrics requires determining new correctness constraints.

For example, consider the two-station voting scenario in Section 5.1, where

the first and second stations have respective margins m1 and m2, with estimated

velocities v1 and v2, and noise σ1 and σ2. With the treaty m1 + m2 ≥ 0 and

templates m1 ≥ r1t + k1 and m2 ≥ r2t + k2, the system solves the optimization

problem:5

arg maxr1,r2,k1,k2 (min(t1, t2))

such that

Projected Expiry

{
m1 ± σ1

√
t1 + v1t1 = r1t1 + k1

m2 ± σ2
√
t2 + v2t2 = r2t2 + k2

Correctness

{
k1 + k2 ≥ 0

r1 + r2 ≥ 0

The system solves for values of the parameters r1, r2, k1, k2 that maximize the

shorter of two projected expiration times t1 and t2. The first two constraints are

projected expiry constraints, determining t1 and t2. The remaining constraints are

correctness constraints to ensure that when the thresholds on the individual values

5Here, we are accounting for a single standard deviation of noise on each metric. For clarity, we
elide some rewriting of these formulae to reduce the parameter space, such as requiring equality
for the final two conditions, and elide checks to ensure that assumptions hold, such as the treaty
being currently valid.

85

hold, the treaty on the sum also holds.

For simple cases, our implementation directly solves for parameters; for exam-

ple, the treaty min(x, y) ≥ 5 using templates x ≥ aγ and y ≥ bγ has optimal

parameter value 5 for both aγ and bγ. In more complex cases, our implementation

solves for parameters using a numerical optimization library.

5.5 Implementation

We implemented predictive treaties and the API described in Section 5.3 on top

of Fabric [65].6 Fabric is a persistent programming language that supports nested,

distributed transactions. Fabric’s security features are not germane to this work,

but its support for linearizable multistore transactions and optimistic concurrency

control make it a good fit for the geodistributed setting. However, we made a few

changes to Fabric to support predictive treaties.

Ignoring comments and blank lines, the implementation added about 5,000

lines of FabIL and Java code to implement the API and changed about 4,000 lines

of Java code in the Fabric runtime.

5.5.1 Integration with Distributed Transactions

While the majority of the implementation is written in FabIL and implements

the enforcement and construction procedures defined above, small modifications

to Fabric’s transaction management system were needed to support predictive

treaties.

Fabric implements distributed transactions using optimistic concurrency con-

trol and 2PC [4]. Fabric worker nodes optimistically use local copies of objects

6This implementation is orthogonal to the implementation used in Chapters 3 and 4.

86

to compute transactions and then act as coordinators with the stores holding the

persistent versions of these objects.

During the prepare phase, the coordinator ships version numbers associated

with the objects read and written to be checked to ensure they’re consistent with

the persisted version. If all objects used are consistent and can be successfully

locked by the prepare phase, the coordinator then runs the commit phase. Oth-

erwise, the coordinator aborts, sending messages to stores indicating they may

release the locks acquired during prepare.

Checking the expiration of predictive treaties in 2PC Fabric’s transac-

tions are strictly serializable, so a transaction’s reads and writes behave as if they

happen atomically in a single step. Because a predictive treaty’s validity depends

on the relation between texpiry and the current time, the use of a predictive treaty

in a transaction must behave as if it was performed at the time the transaction was

committed. Therefore, the transaction protocol must determine for each transac-

tion a commit time that respects strict serializability.

Our implementation sets the commit time of a transaction to be the latest time

at which the prepare phase finished read- and write-locking the persisted objects

at any of the stores. This commit time respects strict serial ordering, because

it is guaranteed to be within the period of time the transaction appears to have

occurred and will be strictly before or after the times other (possibly conflicting)

transactions are applied.

We modified Fabric’s prepare-phase responses to include the time after all ob-

jects at the store have been prepared. The coordinator is modified so that, if

there are no failed prepares, the latest of these timestamps is compared against

the expiration times of predictive treaties that appear valid to the transaction. If

all predictive treaties expiration times are later than the commit time, the coor-

87

dinator sends out a commit message. Otherwise, an abort message is sent and

the coordinator retries the transaction. During the retry, the new attempt will

either observe the treaties used as invalid or updated with longer expiries by other

transactions.

Specialized versioning for predictive treaties We specialized Fabric’s han-

dling of version numbers for predictive treaties, to help avoid false conflicts be-

tween transactions and increase concurrency. In particular, Fabric was modified

to only increment the version number of a predictive treaty when the expiration

time was retracted to an earlier time. This is safe for consistency because in any

case when the coordinator’s version could possibly be later than the persisted value

the coordinator’s copy and the persisted object will have different version numbers.

However, the coordinator’s copy could be “old” with the same version number, but

it would only mean the coordinator’s version has a more conservative expiration

time. To help avoid using overly conservative expiration times, successful prepare

responses include updated expiration times for the predictive treaties read by the

transaction persisted at that store.

Lazy metric update processing Recall that when metrics change value, the

expiration times of predictive treaties may need to be updated to ensure consis-

tency. A transaction may change the value of many metrics at once, and it is

possible that a transaction’s aggregate changes do not affect the expiration time of

a predictive treaty while individual writes of the transaction may have. To avoid

unnecessary and possibly redundant computation of changes that result from up-

dated direct metric values, these resulting effects are lazily determined only when

either the transaction completes or a treaty or derived metric that depends on the

updated direct metric is read by the transaction.

88

5.5.2 Opportunistic Slack Reallocation

Distributed synchronization is sometimes required because some treaty is poten-

tially falsified. Coordination allows the involved nodes to determine whether the

treaty is actually falsified and if not, to determine new locally consistent subtreaties

that suffice to enforce the treaty. When synchronization already must occur, it

saves work to piggyback on this existing synchronization to reallocate slack for

other treaties that are still known to be consistent but no longer optimal for up-

dated model projections. Other treaties involving the synchronizing nodes can be

identified, and new local subtreaties can be constructed for these other treaties,

to balance slack better among the involved nodes than the existing subtreaties

do. This opportunistic reallocation of slack further reduces synchronization and is

important for performance of some applications (see Section 5.6.2).

5.6 Evaluation

Our evaluation aims to address several questions:

1. Do predictive treaties reduce synchronization? (Section 5.1)

2. How does bias difference affect synchronization? (Section 5.6.1)

3. How does this scale with the number of sites? (Section 5.6.1)

4. What happens when the model’s assumption of a stable update trend does

not hold? (Section 5.6.1)

5. Does hierarchy reduce synchronization costs? (Section 5.6.1)

6. Do predictive treaties work on realistic workloads? (Section 5.6.2)

7. How does performance compare with prior related techniques? (Sections 5.6.2

and 5.6.3)

89

8. Does stipulated commit help performance? (Section 5.6.3)

The first question is answered by our initial results given in Section 5.1: using

predictive treaties in the voting example can significantly reduce synchronization.

We now explore the remaining questions.

5.6.1 Voting Microbenchmark

In Section 5.1, we implemented the voting example as a microbenchmark. We

make further use of the microbenchmark to investigate questions 2–5.

Behavior with different biases We ran a series of variations of the voting

example in which we varied the voting bias of the pro-A station to see how the

results change with the overall bias in the system. In each experiment, the pro-B

station is biased with 48% of votes for A, as in the previous experiment, and the

pro-A station prefers A at 56% and 60%. As in Section 5.1, for each configuration

we ran 100 trials where the system votes for 30 seconds and then create a treaty

that asserts the current winner is in the lead. We then measure the time that

elapses until either a query or voting transaction must synchronize with a remote

station, stopping after 400 seconds if there are no synchronizations. This measured

time captures how often the voting application would require client transactions

to synchronize.

The results are shown in Figure 5.13. When the overall bias of the system trends

toward favoring neither candidate, there is less time between synchronization for all

strategies. This occurs because the expected margin between the two candidates

is lower and therefore there is less slack to allocate across the two sites. With

predictive treaties, synchronization is avoided in the majority of trials when trends

are stable, even in less biased scenarios. In nearly all cases where the trials hit

90

103 104 105

0

0.2

0.4

0.6

0.8

1

Milliseconds before first synchronization

F
ra

ct
io

n
of

T
ri

al
s

SE (60% A)

SO (60% A)

PT (60% A)

SE (56% A)

SO (56% A)

PT (56% A)

Figure 5.13: CDF of time until first synchronization under the three strategies
for slack allocation with varying bias: static equal (SE), static optimal (SO), and
predictive treaties (PT). Bias was varied at the first station. Stations received 100
votes per second.

the cutoff time, the system state was such that the treaties would continue to

hold indefinitely; slack was increasing in all stations, reducing the likelihood of

synchronization.

Scaling with number of sites To see how our approach scaled with the number

of voting stations, we ran additional comparisons using 4 and 8 voting sites, again

with 100 trials. Each additional pair of voting stations had the same biases and

voting rates as the two stations in the previous experiment, ensuring that the

overall system bias was the same, 54% votes for candidate A overall, while the

overall rate of voting scaled with the number of stations. The measurement is the

same as before: the distribution of time from the treaty being created until a client

transaction needed to synchronize with a remote station.

The results of this experiment are shown in Figure 5.14. For static strategies,

the time until the first synchronization with either static strategy falls as the

number of stations increases. With predictive treaties, few trials ever synchronize

even in the largest configuration. This is because the predictive treaties are time-

91

103 104 105

0

0.2

0.4

0.6

0.8

1

Milliseconds before first synchronization

F
ra

ct
io

n
of

T
ri

al
s

SO4

SO8

PT4

PT8

Figure 5.14: CDF of time until first synchronization in the voting system under
static optimal (SO) and predictive treaty (PT) strategies for slack allocation with
4 and 8 stations. With predictive treaties, synchronization is rarely needed.

varying and implicitly shift slack.

Adapting to changing update trends Predictive treaties are extremely effec-

tive in avoiding synchronization in scenarios where updates exhibit a stable trend.

This is the assumption of our predictive model: past trends in updates can be used

to predict future behavior. However, in many realistic workloads this might not be

the case: a video may suddenly go viral or the underdog candidate’s voters show

up in strength later in the day. To evaluate how well predictive treaties adapt to

a sudden change in update trends, we ran 10 trials of a scenario where the bias

in voting suddenly changes after a period. We started the system with 2 stations

and an overall bias of 54% pro-A and ran it for 10 seconds of warm-up, voting

only, followed by 2 minutes with querying. Then, clients flip the voting bias to a

new overall bias of 46% pro-A, which we ran for another 13 minutes. During this

period, B is expected to pull ahead of A.

In this and following experiments, network latencies between locations are set

to simulate round-trip times (RTT) between different Amazon EC2 regions, based

92

0 100 200 300 400 500 600 700 800 900

200

400

600

800

Seconds into Run

L
at
en
cy

(m
s) PT vote 99th

PT query 99th

Figure 5.15: 99th percentile vote and query latencies per second of 2-station adap-
tivity test.

on real latency data from Roy et al. [87]. This allows us to validate system behavior

under realistic geodistributed conditions. The RTT between each pair of regions

ranges between 64 and 372 ms.

In Figure 5.15, we see the results of this experiment with 2 stations using

predictive treaties measuring the 99th percentile latencies of votes and winner

queries throughout the run. After the shift in bias, the votes start to tip the margin

in favor of B. During this tipping period votes take longer because they must check

whether they require retractions for the pre-existing treaties, stating that A is still

the winner, and queries take longer as the treaties enforcing the previous result

are being retracted. However, eventually the system stabilizes to a new bias and

winner, and tail latencies become relatively stable again, with occasional spikes to

adjust to new subtreaties. Thus, we see that predictive treaties are able to adapt

to changes in bias.

Benefits of hierarchical structure Another feature of predictive treaties rel-

evant to adapting to changes in bias is that predictive treaties can be constructed

hierarchically. Hierarchical structures allows updates to avoid synchronizing to

reallocate slack for the top-level treaty whenever it violates a local treaty, reduc-

ing the number of locations the update synchronizes with. To demonstrate the

93

0 100 200 300 400 500 600 700 800 900
0

2,000

4,000

6,000

Seconds into Run

L
at
en
cy

(m
s) Flat PT votes 99th

Hierarchical PT votes 99th

Figure 5.16: 99th percentile vote and query latencies for four-station adaptivity
test with and without hierarchical treaties. Hierarchy helps avoid large latency
spikes.

effectiveness of hierarchy, we ran 10 trials of the same experiment but with four

stations. In this case, station three voted similarly to one but in Ireland and station

four voted similarly to two but in Singapore.

The result of this comparison in Figure 5.16 shows that the maximum 99th

percentile latency per second of vote operations rises much higher for the flat

organization. In the flat organization, all synchronization occurs across all four

sites, increasing peak latencies and creating more contention with other transac-

tions. However, the hierarchical organization allows synchronization to sometimes

be localized to pairs of sites that are nearby each other, reducing peak latencies.

5.6.2 Distributed Top-k Monitoring

Babcock and Olston [10] showed how to efficiently monitor the top k items from

a set with sharded counts, by tracking the validity of constraints across the dis-

tributed system. We implemented a simpler alternative top-k monitoring algo-

rithm, taking advantage of predictive treaties to automatically construct and main-

tain related constraints.

In this scenario, counts for a set of identifiers are incremented periodically

across a number of geodistributed servers; the goal is to be able to quickly query

94

the identities of the top k items in the set. Our algorithm introduces a pseudo-

item that we call the marker. Its count always lies between that of the k-th and

k+ 1-th items. The algorithm maintains global predicates asserting that the items

in the current top k all are above the marker, and that the rest of the items

are all below. Our framework automatically maintains these predicates. For this

problem, opportunistic renegotiation is particularly effective, because slack can be

rebalanced for many local treaties at synchronization points.

To evaluate this algorithm, we used a benchmark based on the HTTP request

logs for the 1998 FIFA World-Cup website, which was served from 33 servers

distributed across 4 regions [9]. This benchmark has been used in related work [10,

35]. For comparison purposes, we implemented the more complex algorithm of

Babcock and Olston in the Fabric system. Unlike prior work, both implementations

guarantee strict serializability for updates and queries.

We created a top-level predictive treaty that queried for the 20 most popular

pages. We ran two different tests with this data: a 24 hour run with 52 million

requests, the heaviest traffic day,7 using a single server for each of the 4 regions

(Figure 5.17), and an hour run with 84,000 requests8 with 33 servers across the

4 regions as in the original scenario (Figure 5.18). In both scenarios, a client re-

quested the current top 20 page identifiers every second, and both implementations

ensured the top-20 set was up to date at all times.

The 24 hour run is shown in Figure 5.17, with the number of synchronizations

performed for each implementation plotted relative to the time in the logs. For the

first half of the day, there is little difference between the specialized protocol and

our treaties implementation. After that, however, the Babcock and Olston proto-

col starts synchronizing much more than the predictive treaties implementation.

7This was day 47 in the dataset.
8This was from the first hour of day 30 in the dataset.

95

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000
0

200,000

400,000

600,000

Logged request time (s)

T
ot
al

sy
n
ch
ro
n
iz
at
io
n
s

Babcock and Olston
Predictive treaties

Figure 5.17: Using synchronizations to compare Babcock and Olston’s top-k algo-
rithm with using predictive treaties with four servers over 24 hours of page hits.

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0

2,000

4,000

6,000

8,000

10,000

Logged request time (s)

T
ot
al

sy
n
ch
ro
n
iz
at
io
n
s

Babcock and Olston
Predictive treaties

Figure 5.18: Using synchronizations to compare Babcock and Olston’s top-k algo-
rithm with using predictive treaties with 33 servers over one hour of page hits.

This corresponds to a shift in the request data patterns, with an increased load

across sites and a shift in which regions were receiving more requests. While both

implementations started synchronizing more frequently, the predictive treaties im-

plementation does not experience as dramatic of an increase. This difference comes

from the ability for predictive treaties to adapt to changes in the data trends, which

the slack-allocation heuristic for the Babcock and Olston protocol is not designed

to do.

In the second run, shown in Figure 5.18, the results give a finer detailed look

at the difference between the two implementations with a configuration closely

96

mirroring the original system’s organization. This plot, like the 24 hour run,

shows that our algorithm synchronizes less by the end of the experiment, again

delivering better performance than that of a more complex algorithm specialized

to the problem.

In addition to performing less synchronization, the treaty implementation was

also simpler than the Babcock and Olston protocol: its update routine was 100

lines of code, half as many as the 210 lines of code for our implementation of

Babcock and Olston’s algorithm.

5.6.3 Modified TPC-C

The TPC-C benchmark allows us to compare with prior work and to validate that

our approach scales to a larger benchmark. TPC-C is an OLTP9 benchmark that

simulates a system for order entry and fulfillment.

For purposes of comparison, our variant of TPC-C is based on the one used

by Roy et al. [87]. We similarly shard the database across multiple stores, with

each item’s stock sharded across the stores. We make the realistic assumption that

items are ordered with a nonuniform popularity, skewed across both items and the

locations where they are ordered.

As in Roy et al., the database is initialized with ten warehouses, ten districts

per warehouse, and 100 customers per district. There is an inventory of 1,000

items, for a total of 100,000 Stock objects. Initial stock levels are set randomly

between zero and 100.10 There are no orders in the initial state. Each store, along

with an associated eight clients, experiences latency simulated to act like one of

the EC2 regions.

9OLTP (Online Transaction Processing) applications handle online transaction requests from
external clients.

10Random values are drawn from a uniform distribution.

97

Some object fields are never written by the benchmark. We do not validate

reads of these fields. Object fields that are written (except ones in Order and

OrderLine objects) are sharded across a number of geodistributed data stores.

For instance, each customer object tracks a customer’s account balance. Each

data store maintains a local balance for that customer, reflecting credits and debits

made by clients local to the data store. Adding a charge or a debit can be done

locally, but reading the customer’s balance would incur a synchronization across

all shards.

The workload consists of two of the TPC-C transactions, based on the two po-

tentially distributed operations of the three most frequent transactions in TPC-C.

The NewOrder transaction orders a random quantity (between one and five) of a

random item from a random district at a random warehouse. If there is insufficient

stock to meet the order quantity, item stock is first replenished by adding 100 more

items before decrementing the stock amount. The Delivery transaction enqueues

the oldest order at a random warehouse and district for deferred processing. A

thread at each warehouse later fulfills the order and charges the appropriate cus-

tomer. Except when comparing our baseline with the performance reported by

Roy et al., we do not include the Payment transaction, the remaining of the three

most common transactions. Payment transactions do not require synchronization;

they pad out the workload with operations that don’t have read–write conflicts

with the other two transactions.

Like Roy et al., we avoid synchronization on every NewOrder transaction by

relaxing the requirement for globally monotonic order IDs. Instead, they are gen-

erated monotonically on a per-shard basis. To determine the oldest order, the

Delivery transaction requires a total ordering; we obtain one by breaking ties

with the shard ID. Like Roy et al., we report NewOrder latencies as a distribution

98

plot that captures the core system performance; throughput is directly affected by

how long operations take, longer latencies leads to more bottlenecks and contention

in the system producing worst throughput. Furthermore, these plots help identify

the percentage of orders which coordinated or experienced contention with other

transactions, where latency is nontrivial.

Lazy balancing baseline For a performance baseline, we use a simple algorithm

for sharded TPC-C orders that we call lazy balancing. It tries to fulfill orders

entirely locally, but when the current store lacks enough stock, it synchronizes

with the other stores to obtain the missing stock, and divides remaining stock

equally among the stores. Lazy balancing does not pay any cost for setting up

treaties, and performs especially well when there is no bias across stores, because

all stores run out of stock around the same time and hence, treaties do not offer

much performance benefit.

To determine whether lazy rebalancing is a competitive baseline, we compared

it against the results published for the homeostasis protocol by Roy et al. [87].

When running the same TPC-C workload with the same network configuration

they reported, lazy rebalancing achieves a 90th percentile NewOrder latency of

130ms and a 99th percentile of 200ms, whereas Roy et al. reported a 90th percentile

of roughly 260 ms and a 99th percentile of well over one second.

The next two experiments involve a mix of 95% NewOrder and 5% Delivery

transactions. The system is given ten minutes of warm-up time so caches heat up

and model parameters reach a steady state, followed by ten minutes of measure-

ment.

Benefits of stipulated commit To demonstrate the benefits of stipulated com-

mit, we implemented one version of the benchmark using stipulations, similar to

99

0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0

200

400

600

800

1,000

Fraction of NewOrder Transactions

N
e
w
O
r
d
e
r
L
at
en
cy

(m
s) Predictive treaties

Predictive treaties, no stipulated commit
Lazy balancing

Figure 5.19: CDF of latencies for TPC-C NewOrder transactions, run on two
sharded stores with geographic round-trip latency, with 50% of orders going to hot
items uniformly across sites. Stipulated commit allows performance of predictive
treaties to be comparable to that of lazy balancing.

the withdrawal example in Section 5.3.2, and one using precondition treaties; both

enforce the invariant that total stock is positive for all items. These treaties allows

clients to remove stock from the local region without synchronizing to ensure there

was enough stock to accommodate oversales across the entire database.

We compare the performance of these two implementations with lazy balancing

in a scenario with globally popular items: 1% of the items are ordered 50% of the

time. The symmetry of this scenario makes it favorable to lazy balancing, but

Figure 5.19 shows that in a 2-shard scenario, predictive treaties using stipulated

commit perform similarly.11 Without stipulated commit, the latencies are higher

with predictive treaties. Stipulated commit allows the application to avoid creating

treaties tailored to specific order amounts.

Skewed popularity We also evaluated a second scenario to which predictive

treaties are particularly well suited: skewed popularity across shards. In these

experiments, each replica has a share of “locally hot” items, and a majority of

11To facilitate comparison with prior work [87], the CDF is oriented with probability along the
horizontal axis, so the area under the curve is proportional to expected latency.

100

0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0

500

1,000

1,500

2,000

2,500

3,000

Fraction of NewOrder Transactions

N
e
w
O
r
d
e
r
L
at
en
cy

(m
s) T 2 rep 70%

LB 2 rep 70%

T 2 rep 90%

LB 2 rep 90%

T 5 rep 70%

LB 5 rep 70%

Figure 5.20: CDF of latencies for TPC-C NewOrder transactions with skewed order
distribution across two and five replicas using lazy balancing (LB) and treaties (T).

orders on each replica go to its locally hot items. This results in a skewed dis-

tribution of updates for each item across its sharded values, with most orders for

each item happening at the replica where it is locally hot. We see the results

for a skewed order distribution in Figure 5.20. Predictive treaties allow the sys-

tem to adapt to uneven popularity across replicas, reducing synchronization over

a lazily balanced implementation. With two replicas and 70% of orders going to

locally hot items at each replica, the lazily balanced implementation synchronizes

on 10.5% of orders, while the treaties implementation only synchronizes on 8%.

In the highly skewed case where 90% of orders go to locally hot items, this gap in

synchronization widens: the treaties implementation synchronizes on only 7.5% of

orders, while lazy balancing synchronizes on 12.5%.

5.6.4 Discussion

Predictive treaties are particularly effective when treaties’ slack grows over time,

as in the voting and top-k benchmarks. In this case, predictive treaties improve

on previous techniques by rebalancing slack in the background, avoiding synchro-

101

nization during client operations.

When, as in TPC-C, global slack does not grow, slack cannot be continuously

rebalanced. However, the results show that predictive treaties still have benefits.

The predictive model allows the system to automatically identify and adapt to the

trends and distribution of slack across nodes.

In the unfavorable case where the workload violates the predictive model’s

assumption of stable trends, the system can compensate by detecting and adapting

to new trends. Organizing treaties hierarchically helps reduce overheads in these

chaotic scenarios by restricting synchronizations to small local subsets of the nodes

when possible.

5.7 Related Work

Many prior projects have investigated methods for avoiding contention and syn-

chronization in applications by leveraging application-specific semantics. Even in

single-store systems, the notion of using higher-level semantics to better man-

age contention has been proposed, including hierarchical reader-writer locking [41]

and predicate locks [31]. Particular attention has been paid to this idea in the

distributed application setting, with recent work trying to identify rules for when

synchronization is unnecessary [11, 108].

The running example of the voting application has some similarities with the

bancomat problem [98], a scenario where the application manages funds across

multiple automated teller machines. The bancomat problem was introduced to

compare different approaches in terms of cushion, the maximum amount of money

that can be lost in the system due to asynchronous message loss and regrouping in

a dynamic group membership system. In our work, however, we are not focused

on considerations regarding network partitions.

102

Predictive treaties are designed to improve performance of applications built on

top of strongly consistent systems by enforcing application invariants. Some work

instead starts with efficient systems with weaker consistency guarantees, such as

eventual [107] or causal consistency [68], and introducing techniques such as reser-

vations [83] or CRDTs [93, 92, 14] to enforce stronger guarantees where necessary.

In particular, Indigo [13] allows creating and using reservations to enforce

programmer-specified application invariants in a causally consistent setting. Un-

like predictive treaties, Indigo’s invariants are statically specified at compile time.

They are limited to predicates expressible in first-order logic; for example, Indigo’s

annotations could not enforce a graph connectedness invariant because it is not

expressible in first-order logic [29] without further restrictions on the application,

such as knowing all vertices in the graph at compile time. Predictive treaties do

not have this limitation because they are generated at run time.

Like predictive treaties, some work focuses on monitoring distributed results

that may not be invariant for the lifetime of the application, such as results of

computation on stored state or the values seen in a stream [26]. Some of this work

has examined thresholds on vector values [94, 53] and predictive models [37], but

focuses on settings like sensor networks where strong consistency is not required.

Leveraging similar insights to anticipate how remote values will continue to

behave, distributed simulations and games use dead reckoning [95, 99, 77]. This

technique extrapolates the last known state and behavior of remote objects to per-

form tasks such as generating visuals. Dead reckoning is useful when immediately

computing an inconsistent result is better than blocking the program to ensure a

consistent result. In contrast, predictive treaties use a predictive model to make

consistency cheaper.

Similar to the goal of predictive treaties for providing a basis of high level strong

103

guarantees on the system state, Conits [111] aims to provide high level consistency

guarantees which allow for a continuous trade-off between performance and con-

sistency in a manner similar to epsilon serializability [84]. Similarly, systems like

Pileus [101] offer APIs to directly specify SLA-style guarantees on reads and up-

dates, allowing the application to explicitly accept weaker consistency behavior

for operations that are likely lower latency. However, these guarantees are pri-

marily concerned with consistency of individually read and updated items whereas

predictive treaties are intended to construct high-level semantic guarantees.

In settings that require stronger consistency guarantees, problems such as moni-

toring the top k items in a ranked listing [10], thresholds on a single quantity [76], or

thresholds on linear combinations [15, 87] have been studied. Prior work similarly

divides a slack-like resource between nodes. MDCC [55] applies similar techniques

to provide better concurrency for georeplicated values, processing transactions that

commute without determining an explicit ordering. However, this work is focused

on either specialized scenarios or guarantees on individual objects and has not

leveraged predictive models nor time dependence to shift slack.

Warranties [66], like predictive treaties, allow for compositional predicates built

from arbitrary computations. These computations were more general than metrics

but assertions are limited to state on a single storage node. Like predictive treaties,

warranties have time limits; however, once created, they cannot be revoked before

they expire.

Both predictive treaties and warranties leverage compositionality to ensure

that enforcement checks recompute only the subcomputations possibly affected

by an update. Recomputing only the affected subcomputations to update a result

has been explored in work on incremental self-adjusting computation [1, 18]. In-

coop [18] applies this technique to Hadoop clusters. RDDs [112] use a similar tech-

104

nique for a more limited class of distributed applications in a cluster. In databases,

this technique is used for incremental view maintenance [44], and TxCache [82] of-

fers similar functionality for web applications. However, these techniques were not

designed for high-latency, geodistributed settings.

5.8 Discussion

Predictive treaties and metrics are new abstractions for constructing low overhead

system-scope warranties to enforce assertions over geodistributed state. Building

upon the computation warranties design in Chapter 4, predictive treaties are de-

signed to avoid synchronizing recomputation as much as possible by automatically

selecting stable subexpressions to monitor. To support this, predictive treaties are

defined in terms of metrics that can be maintained locally, computed hierarchi-

cally, and are associated with a prediction model for projecting how their values

will evolve. Predictions help the system determine the lowest synchronizing subex-

pressions to monitor to enforce a system-scope warranty. Furthermore, predictive

treaties support time-varying expressions, which can sometimes be much more sta-

ble than static expressions. Our results show that these new abstractions permit

programs to be straightforwardly built in terms of predictive treaties and metrics,

with significant performance benefits.

105

CHAPTER 6

CONCLUSIONS

In this dissertation I discuss a new abstraction for providing strong consistency

with improved performance over traditional methods: warranties. Warranties pro-

vide time-dependent guarantees on the system’s state, which the application can

use to avoid synchronization between nodes in the system. This reduced syn-

chronization helps to reduce load on the system and reduce transaction latencies,

providing improved scalability without sacrificing consistency.

6.1 Public State Warranties

Public state warranties demonstrate how time-limited guarantees can generalize

optimistic concurrency control by allowing clients to optimistically use locally

cached data without validating the value read at commit time. This leads to

reduced load on stores serving popular data which is infrequently updated.

To ensure strong consistency, stores block updates that would invalidate an

issued public warranty’s guarantee until the warranty expires. By using an adaptive

model, warranties’ time limits are set to benefit as many readers as possible while

avoiding blocking writes which would invalidate the guarantee.

We demonstrated that public state warranties improve throughput and latency

on standard transaction benchmarks as well as a port of the Cornell CS depart-

ment’s course management web service.

6.2 Computation Warranties

Warranties can be generalized to arbitrary predicates, which allows applications to

check high-level statements such as “Who is currently winning?” and “Are there

at least 5 seats on this flight?” rather than explicit stored values, such as vote

106

counts at each station or the currently booked seats on a plane. These high-level

statements can be used as a form of distributed strongly consistent memoization—

applications can use the asserted predicate result in place of performing a dis-

tributed computation.

Computation warranties, unlike state warranties, do not require an effective

freeze of the underlying state to remain true. As long as changes to the under-

lying state do not affect the asserted predicate result, they need not be delayed

by the system. This avoids contention in scenarios where the underlying data

may be updated frequently but not affect application checks over the data, such

as relationships between frequently modified objects. To support this behavior,

the store must check the effect of an update to data used by a computation and

determine if the result has visibly changed. These update checks can be done in-

crementally when computation warranties are constructed compositionally using

other subcomputation warranties.

We demonstrated on a simple microbenchmark that this can help improve

throughput and reduce latency in applications where state warranties would not

be extremely beneficial due to frequent writes. By supporting abstract predicates

across multiple values, computation warranties help applications ensure they are

enforcing consistency guarantees that actually matters to the application rather

than low-level restrictions on reads and writes of individual values.

6.3 Predictive Treaties

Computation warranties are enforced by monitoring subexpression results for changes

after updates to related state. When a computation warranty asserts an expres-

sion over state across multiple stores, synchronization may be required to compute

an updated result. Predictive treaties build on the original computation war-

107

ranties design to provide system-scope warranties that avoid synchronizing during

enforcement. The design uses novel techniques to ensure that recomputations of

multistore assertions, which requires synchronization, are rare.

Predictive treaties use a predictive model and estimated model parameters

on associated metrics that represent computations over the system state. Metrics

predict the trends in the system state using a simple probabilistic model, Brownian

motion with drift, whose parameters can be learned by tracking updates in the

system. Unlike computation warranties, predictive treaties can express predicates

which depend on time in addition to the system’s state. Depending on time allows

predictive treaties to track and assert trends on the system state discovered by

metrics. These time-varying treaties can be used to enforce distributed treaties for

much longer without requiring synchronization than previous static approaches for

similar designs.

Predictive treaties have been demonstrated to improve performance over prior

work on standard benchmarks, simple applications, and using data collected from a

distributed web application. By reducing the occurrence of synchronization events

during the lifetime of a warranty, predictive treaties provide lower operation laten-

cies for distributed applications.

6.4 Future Work

I believe there are a number of directions for future work to better understand how

to provide efficient, expressive, intuitive warranties that help improve distributed

system performance. Here, I outline some potential opportunities.

108

6.4.1 Combining Leased and Public Warranties

Warranties in Chapters 3 and 4 demonstrated the value of public warranties, which

do not require tracking who holds and uses warranties but require blocking inval-

idating updates. However, there are many cases where it may be better to use

leased warranties which support revocation by tracking holders of the warranty,

such as statements that are intended to be broken by users of the warranty (e.g.,

balance checks in banking) or rely on data for which updates are less predictable.

Ideally, the system could use workload data and a well-designed policy to au-

tomatically determine when a warranty should be public or leased to ensure good

performance. Automatically switching between leased and public warranties help

the system find the best tradeoff between benefits for warranty users and enforce-

ment overheads.

Furthermore, there may be potential benefits of mixing leased and public war-

ranties when composing warranties for enforcement. Perhaps there are cases where

it might be useful to use leased warranties to enforce a system-scope public war-

ranty: allowing more flexibility at each store while supporting greater sharing and

lower tracking overhead at for system-scope guarantees.

6.4.2 Fault Tolerance and Failure Recovery

There are questions about how these abstractions can be designed to work well in

the presence of failures such as network partitions, servers crashing, and byzantine

behavior by some subset of the system nodes. In the designs presented, we did

not consider design opportunities and overheads in making the system resilient to

crashes of stores hosting and enforcing treaties. Using replication to tolerate fail-

ures of treaty hosts would help but is likely to create additional latency overheads.

On the other hand, it may also be possible that warranties and treaties can be

109

used to enhance fault tolerance techniques by providing more general abstractions

for capturing what is and isn’t currently true about the system’s status.

6.4.3 Techniques for Warranty Search and Discovery

Computation warranties and predictive treaties are designed to be broadly applica-

ble by capturing high-level abstract guarantees about the system state. However,

these techniques still rely on finding and using exact matches for the predicates

used within an application.

For example, it’s possible for the current design to simultaneously use and

enforce two predicates φ and ψ without recognizing and leveraging an implication

between the two such as φ =⇒ ψ. A better design would probably enforce ψ using

φ even if it would normally not be the best choice for avoiding synchronization—

the system will be enforcing φ and so there’s no need to create overheads for a

separate enforcement strategy in the meantime.

6.4.4 Population Statistics for Metrics

Predictive treaties performance improvements are derived from having reasonably

accurate predictions of future update behavior in an application. Unfortunately

many real applications create new data for which there is no past behavior to

construct predictions from, such as new user accounts or new items stocked in a

warehouse. In cases where there is no past behavior to base predictions on, it is

reasonable to assume that behavior for objects in a collection is predictive of the

behavior of newly created or newly added objects.

Population statistics, predicting update behavior based on the trends seen

across a group of related metrics, would allow predictive treaties to provide im-

proved performance for cases where there aren’t necessarily continuous trends.

110

Consider a boolean value which starts as false and eventually becomes true, never

going back to false. This scenario will never exhibit enough updates to predict

how much time will pass between creation and being set to true. With popula-

tion statistics however, we can generalize observations from older boolean values

which have already been created and then flipped to true. This scenario may seem

contrived but it mirrors a fairly common pattern in distributed computing, found

in scenarios like monitoring who has moved to a new version of your software,

tracking who has cast their ballot in an election, or marking what seats have sold

for a show.

6.4.5 Support for Non-Numeric Metric Data

So far the investigation in predictive treaties has been focused on numeric compu-

tations and data, but there are plenty of other kinds of data for which it might

be useful to construct predictions for and create treaties over. The boolean ex-

ample for population statistics is an example of a non-numeric metric data. More

broadly, it would be useful to construct predictive treaties for statements on data

structures, such as set membership or graph connectedness.

Some of these treaties are ostensibly supported by following the memoized

function pattern used in Section 5.3 to build the voting application. However, it

is not clear if there is a way to generalize the model-based techniques for choosing

enforcement strategies with arbitrarily structured data. Extending metrics and

predictive treaties to general data structures would make them much more widely

applicable across distributed applications—much of distributed computing is not

exclusively concerned with numbers.

111

6.4.6 Alternative Prediction Models

While linear trends are certainly good for capturing many behaviors, there are

some known patterns that show up in distributed systems that are nonlinear and

probably worth detecting and leveraging for avoiding synchronization. For in-

stance, many services see patterns in data access that are explained by the sleep

patterns of users around the world, with peak activity or uptime at some point

each day [74]. One thought is to combine some more long-term predictions of

such diurnal patterns with shorter term simple linear predictions to make better

decisions about how to allocate and transfer slack over time. Perhaps the longer

term prediction could help to make decisions about opportunistic slack negotiation

(Section 5.5.2).

112

BIBLIOGRAPHY

[1] Umut A. Acar, Amal Ahmed, and Matthias Blume. Imperative self-adjusting
computation. In 35th ACM Symp. on Principles of Programming Languages
(POPL), pages 309–322, 2008.

[2] Atul Adya. Transaction management for mobile objects using optimistic
concurrency control. Master’s thesis, Massachusetts Institute of Technol-
ogy, January 1994. Also available as MIT Laboratory for Computer Science
Technical Report MIT/LCS/TR-626.

[3] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ronnie
Chaiken, John R. Douceur, Jon Howell, Jacob R. Lorch, Marvin Theimer,
and Roger P. Wattenhofer. FARSITE: Federated, available, and reliable
storage for an incompletely trusted environment. In 5th USENIX Symp. on
Operating Systems Design and Implementation (OSDI), December 2002.

[4] Atul Adya, Robert Gruber, Barbara Liskov, and Umesh Maheshwari. Ef-
ficient optimistic concurrency control using loosely synchronized clocks. In
ACM SIGMOD International Conference on Management of Data (SIG-
MOD), pages 23–34, San Jose, CA, May 1995.

[5] Atul Adya and Barbara Liskov. Lazy consistency using loosely synchronized
clocks. In 16th ACM Symp. on Principles of Distributed Computing, PODC
’97, pages 73–82, August 1997.

[6] Marcos K. Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and Chris-
tos Karamanolis. Sinfonia: a new paradigm for building scalable distributed
systems. In 21st ACM Symp. on Operating System Principles (SOSP), pages
159–174, October 2007.

[7] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Com-
pilers: Principles, Techniques, and Tools (2nd Edition). Addison-Wesley
Longman Publishing Co., Inc., 2006.

[8] Owen Arden, Michael D. George, Jed Liu, K. Vikram, Aslan Askarov, and
Andrew C. Myers. Sharing mobile code securely with information flow con-
trol. In IEEE Symp. on Security and Privacy, pages 191–205, May 2012.

[9] Martin Arlitt and Tai Jin. A workload characterization study of the 1998
world cup web site. IEEE network, 14(3):30–37, 2000.

113

[10] Brian Babcock and Chris Olston. Distributed top-k monitoring. In Proceed-
ings of the 2003 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’03, pages 28–39, New York, NY, USA, 2003. ACM.

[11] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Heller-
stein, and Ion Stoica. Coordination avoidance in database systems. PVLDB,
8:185–196, 2014.

[12] Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Heller-
stein, and Ion Stoica. Probabilistically bounded staleness for practical partial
quorums. PVLDB, 5(8):776–787, April 2012.

[13] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno
Preguiça, Mahsa Najafzadeh, and Marc Shapiro. Putting consistency back
into eventual consistency. In Proceedings of the Tenth European Conference
on Computer Systems, EuroSys ’15, pages 6:1–6:16, New York, NY, USA,
2015. ACM.

[14] Valter Balegas, Diogo Serra, Sérgio Duarte, Carla Ferreira, Marc Shapiro,
Rodrigo Rodrigues, and Nuno Preguiça. Extending eventually consistent
cloud databases for enforcing numeric invariants. In IEEE Symp. on Reliable
Distributed Systems (SRDS), September 2015.

[15] Daniel Barbará-Millá and Hector Garcia-Molina. The demarcation protocol:
A technique for maintaining constraints in distributed database systems. The
VLDB Journal, 3(3):325–353, July 1994.

[16] Philip A. Bernstein and Nathan Goodman. Concurrency control in dis-
tributed database systems. ACM CSUR, 13(2):185–221, 1981.

[17] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1987.

[18] Pramod Bhatotia, Alexander Wieder, Rodrigo Rodrigues, Umut A. Acar,
and Rafael Pasquini. Incoop: MapReduce for incremental computations. In
ACM Symp. Cloud Computing, October 2011.

[19] Chavdar Botev et al. Supporting workflow in a course management sys-
tem. In 36th ACM Technical Symposium on Computer Science Education
(SIGCSE), pages 262–266, February 2005.

114

[20] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web
caching and Zipf-like distributions: Evidence and implications. In INFO-
COM, 1999.

[21] Robert G. Brown. Exponential smoothing for predicting demand. Operations
Research, 5(1):145–145, 1957.

[22] Heiko Böck. Java Persistence API. Springer, 2011.

[23] Michael Carey, David J. DeWitt, Chander Kant, and Jeffrey F. Naughton.
A status report on the OO7 OODBMS benchmarking effort. In 9th ACM
SIGPLAN Conf. on Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA), pages 414–426, 1994.

[24] Chee-Yee Chong and Srikanta P Kumar. Sensor networks: Evolution, op-
portunities, and challenges. Proceedings of the IEEE, 91(8):1247–1256, 2003.

[25] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christo-
pher Heiser, Peter Hochschild, et al. Spanner: Google’s globally distributed
database. ACM Transactions on Computer Systems (TOCS), 31(3):8, 2013.

[26] Graham Cormode. The continuous distributed monitoring model. ACM
SIGMOD Record, 42(1):5–14, May 2013.

[27] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kaku-
lapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian,
Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s highly available key–
value store. In 21st ACM Symp. on Operating System Principles (SOSP),
2007.

[28] Rick Durrett. Probability: Theory and Examples. Cambridge University
Press, 4th edition, 2010.

[29] H.D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Under-
graduate Texts in Mathematics. Springer New York, 1996.

[30] EclipseLink. http://www.eclipse.org/eclipselink.

[31] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of
consistency and predicate locks in a database system. Comm. of the ACM,

115

19(11):624–633, November 1976. Also published as IBM RJ1487, December
1974.

[32] Gavin King et al. Hibernate developer guide. Hibernate Commu-
nity Documentation. http://docs.jboss.org/hibernate/orm/4.0/-

devguide/en-US/html/ch05.html.

[33] Brad Fitzpatrick. Distributed caching with memcached. Linux Journal,
August 2004.

[34] H. Garcia-Molina. Using semantic knowledge for transaction processing in a
distributed database. ACM Trans. on Database Systems, 8(2):186–213, June
1983.

[35] Minos Garofalakis, Daniel Keren, and Vasilis Samoladas. Sketch-based ge-
ometric monitoring of distributed stream queries. Proceedings of the VLDB
Endowment, 6(10):937–948, August 2013.

[36] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel
Rosenblum, and Amin Vahdat. Exploiting a natural network effect for scal-
able, fine-grained clock synchronization. In 15th USENIX Symp. on Net-
worked Systems Design and Implementation (NSDI), pages 81–94, April
2018.

[37] Nikos Giatrakos, Antonios Deligiannakis, Minos Garofalakis, Izchak Sharf-
man, and Assaf Schuster. Prediction-based geometric monitoring over dis-
tributed data streams. In Proceedings of the 2012 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’12, pages 265–276,
New York, NY, USA, 2012. ACM.

[38] David K. Gifford. Information storage in a decentralized computer system.
Technical Report CSL-81-8, Palo Alto Research Centers, Xerox Corporation,
June 1981. Revised March 1982.

[39] Cary G. Gray. Performance and Fault-Tolerance in a Cache for Distributed
File Service. PhD thesis, Stanford University, December 1990.

[40] Cary G. Gray and David R. Cheriton. Leases: An efficient fault-tolerant
mechanism for distributed file cache consistency. In 12th ACM Symp. on
Operating System Principles (SOSP), SOSP ’89, pages 202–210, 1989.

[41] J. Gray, R. Lorie, G. Putzolu, and I. Traiger. Granularity of locks and de-

116

grees of consistency in a shared database. In Modeling in Data Base Manage-
ment Systems. Amsterdam: Elsevier North-Holland, 1976. Also available in
Chapter 3 of Readings in Database Systems, Second Edition, M. Stonebraker
Editor, Morgan Kaufmann, 1994.

[42] J. N. Gray. Notes on database operating systems. In R. Bayer, R. Gra-
ham, and G. Seegmuller, editors, Operating Systems: An Advanced Course,
number 60 in Lecture Notes in Computer Science, pages 393–481. Springer-
Verlag, 1978.

[43] Paul Greenfield, Alan Fekete, Julian Jang, Dean Kuo, and Surya Nepal.
Isolation support for service-based applications: A position paper. In 3rd

CIDR, pages 314–323, 2007.

[44] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Main-
taining views incrementally. In ACM SIGMOD International Conference on
Management of Data (SIGMOD), pages 157–166, 1993.

[45] T. Haerder. Observations on optimistic concurrency control schemes. Infor-
mation Systems, 9(2):111–120, June 1984.

[46] M. Herlihy and J. Wing. Linearizability: A correctness condition for concur-
rent objects. Technical Report CMU-CS-88-120, Carnegie Mellon University,
Pittsburgh, Pa., 1988.

[47] Maurice Herlihy and Eric Koskinen. Transactional boosting: A methodology
for highly-concurrent transactional objects. pages 207–216, February 2008.

[48] Hibernate. http://www.hibernate.org.

[49] Charles C. Holt. Forecasting trends and seasonals by exponentially weighted
averages. carnegie institute of technology. Technical report, Pittsburgh ONR
memorandum, 1957.

[50] J. Stuart Hunter. The exponentially weighted moving average. Journal of
Quality Technology, 18:203–210, 1986.

[51] J. Jang, A. Fekete, and P. Greenfield. Delivering promises for web services
applications. In 5th ICWS, pages 599–606, July 2007.

[52] http://jmeter.apache.org.

117

[53] Daniel Keren, Izchak Sharfman, Assaf Schuster, and Avishay Livne. Shape
sensitive geometric monitoring. IEEE Transactions on Knowledge and Data
Engineering, 24(8):1520–1535, August 2012.

[54] Eric Koskinen, Matthew Parkinson, and Maurice Herlihy. Coarse-grained
transactions. In 37th ACM Symp. on Principles of Programming Languages
(POPL), pages 19–30, January 2010.

[55] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan
Fekete. MDCC: Multi-data center consistency. In ACM SIGOPS/EuroSys
European Conference on Computer Systems, April 2013.

[56] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency
control. ACM Trans. on Database Systems, 6(2):213–226, June 1981.

[57] L. Lamport. Towards a theory of correctness for multi-user data base sys-
tems. Report CA-7610-0712, Mass. Computer Associates, Wakefield, MA,
October 1976.

[58] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Comm. of the ACM, 21(7):558–565, July 1978.

[59] Butler W Lampson. Designing a global name service. In 5th ACM Symp. on
Principles of Distributed Computing, PODC ’86, pages 1–10, August 1986.

[60] Ki Suh Lee, Han Wang, Vishal Shrivastav, and Hakim Weatherspoon. Glob-
ally synchronized time via datacenter networks. In SIGCOMM, pages 454–
467, 2016.

[61] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça,
and Rodrigo Rodrigues. Making geo-replicated systems fast as possible, con-
sistent when necessary. In 10th USENIX Symp. on Operating Systems Design
and Implementation (OSDI), 2012.

[62] B. Liskov, A. Adya, M. Castro, M. Day, S. Ghemawat, R. Gruber, U. Ma-
heshwari, A. C. Myers, and L. Shrira. Safe and efficient sharing of persistent
objects in Thor. In ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD), pages 318–329, June 1996.

[63] Barbara Liskov. Practical uses of synchronized clocks in distributed systems.
In 10th ACM Symp. on Principles of Distributed Computing, PODC ’91,
pages 1–9, August 1991.

118

[64] Barbara Liskov, Liuba Shrira, and John Wroclawski. Efficient at-most-once
messages based on synchronized clocks. ACM Trans. on Computer Systems,
9(2):125–142, May 1991.

[65] Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, and Andrew C.
Myers. Fabric: A platform for secure distributed computation and storage.
In 22nd ACM Symp. on Operating System Principles (SOSP), pages 321–334,
October 2009.

[66] Jed Liu, Tom Magrino, Owen Arden, Michael D. George, and Andrew C. My-
ers. Warranties for faster strong consistency. In 11th USENIX Symp. on Net-
worked Systems Design and Implementation (NSDI), pages 513–517, April
2014.

[67] Ying Liu, Xiaxi Li, and Vladimir Vlassov. GlobLease: A globally consistent
and elastic storage system using leases. In 2014 20th IEEE International
Conference on Parallel and Distributed Systems (ICPADS), pages 701–709.
IEEE, 2014.

[68] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. An-
dersen. Don’t settle for eventual: scalable causal consistency for wide-area
storage with COPS. In 23rd ACM Symp. on Operating System Principles
(SOSP), 2011.

[69] Tom Magrino, Jed Liu, Nate Foster, Johannes Gehrke, and Andrew C. My-
ers. Efficient, consistent distributed computation with predictive treaties. In
ACM SIGOPS/EuroSys European Conference on Computer Systems, March
2019.

[70] D. Maier and J. Stein. Development and implementation of an object-
oriented DBMS. In B. Shriver and P. Wegner, editors, Research Directions in
Object-Oriented Programming, pages 355–392. MIT Press, Cambridge, MA,
USA, 1987.

[71] K. Marzullo. Loosely-Coupled Distributed Services: A Distributed Time Ser-
vice. PhD thesis, Stanford University, Stanford, Ca., 1983.

[72] Michael Menth and Frederik Hauser. On moving averages, histograms
and time-dependent rates for online measurement. In Proceedings of the
8th ACM/SPEC on International Conference on Performance Engineering,
ICPE ’17, pages 103–114, New York, NY, USA, 2017. ACM.

119

[73] Donald Michie. “Memo” functions and machine learning. Nature, 218:19–22,
1968.

[74] James W Mickens and Brian D Noble. Exploiting availability prediction
in distributed systems. In 3rd USENIX Symp. on Networked Systems De-
sign and Implementation (NSDI), pages 73–86, Berkeley, CA, USA, 2006.
USENIX Association.

[75] D. L. Mills. Network time protocol (version 3) specification, implementation
and analysis. Network Working Report RFC 1305, March 1992.

[76] P. O’Neil. The escrow transactional method. ACM Trans. on Database
Systems, 11(4):405–430, December 1986.

[77] Lothar Pantel and Lars C. Wolf. On the suitability of dead reckoning schemes
for games. In Proceedings of the 1st Workshop on Network and System Sup-
port for Games, NetGames ’02, pages 79–84, New York, NY, USA, 2002.
ACM.

[78] C. H. Papadimitriou. The serializability of concurrent database updates.
Journal of the ACM, 26(4):631–653, October 1979.

[79] Peter Peinl and Andreas Reuter. Empirical comparison of database concur-
rency control schemes. In 9th Int’l Conf. on Very Large Data Bases (VLDB),
pages 97–108, 1983.

[80] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. Demers.
Flexible update propagation for weakly consistent replication. In 17th ACM
Symp. on Operating System Principles (SOSP), St. Malo, France, October
1997.

[81] Rico Piantoni and Constantin Stancescu. Implementing the Swiss exchange
trading system. In Fault-Tolerant Computing, 1997. FTCS-27. Digest of
Papers., Twenty-Seventh Annual International Symposium on, pages 309–
313. IEEE, 1997.

[82] Dan R. K. Ports, Austin T. Clements, Irene Zhang, Samuel Madden, and
Barbara Liskov. Transactional consistency and automatic management in an
application data cache. In 9th USENIX Symp. on Operating Systems Design
and Implementation (OSDI), 2010.

[83] Nuno Preguiça, J. Legatheaux Martins, Miguel Cunha, and Henrique Domin-

120

gos. Reservations for conflict avoidance in a mobile database system. In Pro-
ceedings of the 1st International Conference on Mobile Systems, Applications
and Services, MobiSys ’03, pages 43–56, New York, NY, USA, 2003. ACM.

[84] Calton Pu. Generalized transaction processing with epsilon-serializability. In
Proceedings of Fourth International Workshop on High Performance Trans-
action Systems, 1991.

[85] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems.
McGraw-Hill, Inc., New York, NY, USA, 3 edition, 2003.

[86] D. P. Reed. Naming and synchronization in a decentralized computer sys-
tem. Technical Report MIT/LCS/TR-205, Laboratory for Computer Science,
MIT, Cambridge, MA, 1978.

[87] Sudip Roy, Lucja Kot, Gabriel Bender, Bailu Ding, Hossein Hojjat,
Christoph Koch, Nate Foster, and Johannes Gehrke. The homeostasis proto-
col: Avoiding transaction coordination through program analysis. In ACM
SIGMOD International Conference on Management of Data (SIGMOD),
2015.

[88] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM CSUR,
37(1):42–81, March 2005.

[89] Bianca Schroeder, Adam Wierman, and Mor Harchol-Balter. Open versus
closed: a cautionary tale. In 3rd USENIX Symp. on Networked Systems
Design and Implementation (NSDI), pages 18–31, Berkeley, CA, USA, 2006.
USENIX Association.

[90] Ravi Sethi. Useless actions make a difference: Strict serializability of
database updates. Journal of the ACM, 29(2):394–403, 1982.

[91] Alex Shamis, Matthew Renzelmann, Stanko Novakovic, Georgios Chat-
zopoulos, Aleksandar Dragojevic, Dushyanth Narayanan, and Miguel Castro.
Fast general distributed transactions with opacity. In ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD), June 2019.

[92] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
Conflict-free replicated data types. In Proceedings of the 13th International
Conference on Stabilization, Safety, and Security of Distributed Systems,
SSS’11, pages 386–400, Berlin, Heidelberg, 2011. Springer-Verlag.

121

[93] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski.
Convergent and commutative replicated data types. Bulletin of the EATCS,
104:67–88, 2011.

[94] Izchak Sharfman, Assaf Schuster, and Daniel Keren. A geometric approach to
monitoring threshold functions over distributed data streams. ACM Trans-
actions on Database Systems, 32(4), November 2007.

[95] Sandeep K. Singhal and David R. Cheriton. Using a position history-based
protocol for distributed object visualization. Technical Report CS-TR-94-
1505, Stanford University, Department of Computer Science, Stanford, CA,
USA, February 1994.

[96] ObjectDB Software. ObjectDB 2.3 developer’s guide.
http://www.objectdb.com/java/jpa/persistence/lock.

[97] Michael Stonebraker, Lawrence A. Rowe, and Michael Hirohama. The im-
plementation of POSTGRES. IEEE Transactions on Knowledge and Data
Engineering, 2(1):125–142, March 1990.

[98] Jeremy Sussman and Keith Marzullo. The bancomat problem: an example
of resource allocation in a partitionable asynchronous system. Theoretical
Computer Science, 291(1):103–131, 2003.

[99] Simon J.E. Taylor, Jon Saville, and Rajeev Sudra. Developing interest man-
agement techniques in distributed interactive simulation using java. In 1999
Winter Simulation Conference Proceedings, volume 1, pages 518–523. IEEE,
December 1999.

[100] Doug Terry. Replicated data consistency explained through baseball. Com-
mun. ACM, 56(12):82–89, December 2013.

[101] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Bal-
akrishnan, Marcos K. Aguilera, and Hussam Abu-Libdeh. Consistency-based
service level agreements for cloud storage. In 24th ACM Symp. on Operating
System Principles (SOSP), 2013.

[102] Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers,
and Mike J. Spreitzer. Managing update conflicts in Bayou, a weakly con-
nected replicated storage system. In 15th ACM Symp. on Operating System
Principles (SOSP), pages 172–183, December 1995.

122

[103] Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee. Frangi-
pani: a scalable distributed file system. In 16th ACM Symp. on Operating
System Principles (SOSP), pages 224–237, 1997.

[104] Mohit Tiwari, Xun Li, Hassan M. G. Wassel, Frederic T. Chong, and Tim-
othy Sherwood. Execution leases: A hardware-supported mechanism for
enforcing strong non-interference. In IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2009.

[105] TPC Council. TPC-C benchmark, revision 5.11, 2010.

[106] Matt Tracy. How CockroachDB does distributed, atomic trans-
actions, September 2015. https://www.cockroachlabs.com/blog/

how-cockroachdb-distributes-atomic-transactions/.

[107] Werner Vogels. Eventually consistent. Comm. of the ACM, 52(1):40–44,
January 2009.

[108] Michael Whittaker and Joseph M Hellerstein. Interactive checks for coordi-
nation avoidance. Proceedings of the VLDB Endowment, 12(1):14–27, 2018.

[109] Yahoo! cloud serving benchmark. https://github.com/brianfrankcooper/YCSB.

[110] Jian Yin, Lorenzo Alvisi, Michael Dahlin, and Calvin Lin. Volume leases
for consistency in large-scale systems. IEEE Transactions on Knowledge and
Data Engineering, 11(4):563–576, 1999.

[111] Haifeng Yu and Amin Vahdat. Design and evaluation of a continuous con-
sistency model for replicated services. In 4th USENIX Symp. on Operating
Systems Design and Implementation (OSDI), 2000.

[112] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In 9th USENIX Symp. on Networked Systems Design and
Implementation (NSDI), 2012.

123

https://www.cockroachlabs.com/blog/how-cockroachdb-distributes-atomic-transactions/
https://www.cockroachlabs.com/blog/how-cockroachdb-distributes-atomic-transactions/

	Biographical Sketch
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Beyond Optimism
	Predicates to Avoid Contention
	Compositional Predicates for Low-Overhead Enforcement
	Capturing Trends with Time-Varying Predicates
	The Warranty Design Space
	Consistency
	Revocability
	Predicate Scope
	Time Dependence

	Dissertation Outline

	System Model
	Strong Consistency
	Optimistic Concurrency Control
	Transactions Across Multiple Stores
	Clock Synchronization

	Public Warranties
	Warranties as Optimistic Concurrency Control
	Warranties as Generalized Read Leases
	Issuing State Warranties
	Distributing Public Warranties
	Defending Public Warranties
	Performance Trade-offs
	Setting Warranty Terms with Workload Estimation
	Using Warranties in Transactions
	The Warranty Commit Protocol
	Avoiding Protocol Phases

	Public Warranties Implementation
	Evaluation
	Multiuser OO7 Benchmark
	Course Management System
	Comparing with Hibernate/HSQLDB
	Experimental Setup
	Results

	Discussion

	Computation Warranties
	Example Applications
	Generated Web Pages
	Top N Items
	Searching for Airline Seats

	Programming with Computation Warranties
	Ensuring Correct Behavior Using Computation Warranties
	Proposing and Issuing Computation Warranties
	Using Computation Warranties
	Setting Computation Warranty Terms
	Defending Computation Warranties
	Incremental Revalidation

	Public Computation Warranties Implementation
	Evaluation
	Top-Subscribers Benchmark
	Course Management System
	Results

	Related Work
	Discussion

	Predictive Treaties
	Predictive Treaties by Example: Voting
	Enforcing Predicates with Slack
	Time-Dependent Treaties
	Preliminary Evaluation
	Hierarchical Treaties

	Predictive Treaties and Metrics
	Predictive Treaties
	Enforcing Predictive Treaties
	Metrics
	A Prediction Model for Metric Updates
	Expiration

	Using Predictive Treaties
	Programming with Treaties and Metrics
	Stipulated Commit

	Automatically Creating Low-Coordination Treaties
	Estimating Model Parameters for Metrics
	Automatically Choosing an Enforcement Strategy

	Implementation
	Integration with Distributed Transactions
	Opportunistic Slack Reallocation

	Evaluation
	Voting Microbenchmark
	Distributed Top-k Monitoring
	Modified TPC-C
	Discussion

	Related Work
	Discussion

	Conclusions
	Public State Warranties
	Computation Warranties
	Predictive Treaties
	Future Work
	Combining Leased and Public Warranties
	Fault Tolerance and Failure Recovery
	Techniques for Warranty Search and Discovery
	Population Statistics for Metrics
	Support for Non-Numeric Metric Data
	Alternative Prediction Models

	Bibliography

