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ABSTRACT

Modern applications often operate on data in multiple administra-
tive domains. In this federated setting, participants may not fully
trust each other. These distributed applications use transactions as
a core mechanism for ensuring reliability and consistency with per-
sistent data. However, the coordination mechanisms needed for
transactions can both leak confidential information and allow unau-
thorized influence.

By implementing a simple attack, we show these side channels
can be exploited. However, our focus is on preventing such attacks.
We explore secure scheduling of atomic, serializable transactions
in a federated setting. While we prove that no protocol can guaran-
tee security and liveness in all settings, we establish conditions for
sets of transactions that can safely complete under secure schedul-
ing. Based on these conditions, we introduce staged commit, a
secure scheduling protocol for federated transactions. This proto-
col avoids insecure information channels by dividing transactions
into distinct stages. We implement a compiler that statically checks
code to ensure it meets our conditions, and a system that schedules
these transactions using the staged commit protocol. Experiments
on this implementation demonstrate that realistic federated transac-
tions can be scheduled securely, atomically, and efficiently.

1. INTRODUCTION

Many modern applications are distributed, operating over data
from multiple domains. Distributed protocols are used by applica-
tions to coordinate across physically separate locations, especially
to maintain data consistency. However, distributed protocols can
leak confidential information unless carefully designed otherwise.

Distributed applications are often structured in terms of transac-
tions, which are atomic groups of operations. For example, when
ordering a book online, one or more transactions occur to ensure
that the same book is not sold twice, and to ensure that the sale of
a book and payment transfer happen atomically. Transactions are
ubiquitous in modern distributed systems. Implementations include
Google’s Spanner [11], Postgres [29], and Microsoft’s Azure Stor-
age [9]. Common middleware such as Enterprise Java Beans [26]
and Microsoft .NET [1] also support transactions.

Many such transactions are distributed, involving multiple au-
tonomous participants (vendors, banks, etc.). Crucially, these par-
ticipants may not be equally trusted with all data. Standards such as
X/Open XA [2] aim specifically to facilitate transactions that span
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multiple systems, but none address information leaks inherent to
transaction scheduling.

Distributed transaction implementations are often based on the
two-phase commit protocol (2PC) [17]. We show that 2PC can cre-
ate unintentional channels through which private information may
be leaked, and trusted information may be manipulated. We expect
our results apply to other protocols as well.

There is a fundamental tension between providing strong consis-
tency guarantees in an application and respecting the security re-
quirements of the application’s trust domains. This work deepens
the understanding of this trade-off and demonstrates that providing
both strong consistency and security guarantees, while not always
possible, is not a lost cause.

Concretely, we make the following contributions in this paper:

o We describe abort channels, a new kind of side channel through
which confidential information can be leaked in transactional
systems (§2).

e We demonstrate exploitation of abort channels on a distributed
system (§2.3).

e We define an abstract model of distributed systems, trans-
actions, and information flow security (§ 3), and introduce
relaxed observational determinism, a noninterference-based
security model for distributed systems (§3.7.1).

e We establish that within this model, it is not possible for any
protocol to securely serialize all sets of transactions, even if
the transactions are individually secure (§4).

e We introduce and prove a sufficient condition for ensuring
serializable transactions can be securely scheduled (§5).

e We define the staged commit protocol, a novel secure schedul-
ing protocol for transactions meeting this condition (§6).

e We implement our novel protocol in the Fabric system [24],
and extend the Fabric language and compiler to statically en-
sure transactions will be securely scheduled (§7).

e We evaluate the expressiveness of the new static checking
discipline and the runtime overhead of the staged commit
protocol (§8).

We discuss related work further in §9, and conclude in § 10. For
brevity, we present proof sketches of the results in this paper; full
proofs can be found in the technical report [34].

2. ABORT CHANNELS

Two transactions working with the same data can conflict if at
least one of them is writing to the data. Typically, this means that
one (or both) of the transactions has failed and must be aborted.
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Rainforest

Figure 1: Rainforest example. Gloria and Fred each buy an Outel
chip via Rainforest’s store. Gloria’s transaction is in red, dashed
arrows; Fred’s is in blue, solid arrows.

In many transaction protocols, including 2PC, a participant' in-
volved in both transactions can abort a failed transaction by send-
ing an abort message to all other participants in the failed transac-
tion [17]. These abort messages can create unintended abort chan-
nels, through which private information can be leaked, and trusted
information can be manipulated.

An abort message can convey secret information if a participant
aborts a transaction otherwise likely to be scheduled, because an-
other participant in the same transaction might deduce something
about the aborting participant. For example, that other partici-
pant might guess that the abort is likely caused by the presence
of another—possibly secret—conflicting transaction.

Conspirators might deliberately use abort channels to covertly
transfer information within a system otherwise believed to be se-
cure. Although abort channels communicate at most one bit per
(attempted) transaction, they could be used as a high-bandwidth
covert channel for exfiltration of sensitive information. Current
transactional systems can schedule over 100 million transactions
per second, even at modest system sizes [15]. It is difficult to know
if abort channels are already being exploited in real systems, but
large-scale, multi-user transactional systems such as Spanner [11]
or Azure Storage [9] are in principle vulnerable.

Abort messages also affect the integrity of transaction schedul-
ing. An abort typically causes a transaction not to be scheduled.
Even if the system simply retries the transaction until it is sched-
uled, this still permits a participant to control the ordering of trans-
actions, even if it has no authority to affect them. For example,
a participant might gain some advantage by ensuring that its own
transactions always happen after a competitor’s.

Transactions can also create channels that leak information based
on timing or termination [5, 8]. We treat timing and termination
channels as outside the scope of this work, to be handled by mech-
anisms such as timing channel mitigation [22, 4, 7]. Abort channels
differ from these previously identified channels in that information
leaks via the existence of explicit messages, with no reliance on
timing other than their ordering. Timing mitigation does not con-
trol abort channels.

2.1 Rainforest Example

A simple example illustrates how transaction aborts create a chan-
nel that can leak information. Consider a web-store application for
the fictional on-line retailer Rainforest, illustrated in Fig. 1. Rain-
forest’s business operates on data from suppliers, customers, and
banks. Rainforest wants to ensure that it takes money from cus-
tomers only if the items ordered have been shipped from the sup-
pliers. As a result, Rainforest implements purchasing using serial-
izable transactions. Customers expect that their activities do not in-
fluence each other, and that their financial information is not leaked
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Figure 2: The events of the transactions in Fig. 1. Gloria’s trans-
action consists of rg, r1, s, rs, ra, and rs. Bob’s consists of bg,
b1, b2, bg, ba, and bs. Happens-before (—) relationships are ar-
rows. The shaded blocks around events indicate locations, and are
labeled with participants from Fig. 1.

S

to suppliers. These expectations might be backed by law.

In Fig. 1, Gloria and Fred are both making purchases on Rain-
forest at roughly the same time. They each purchase an Outel chip,
and pay using their accounts at CountriBank.

If Rainforest uses 2PC to perform both of these transactions, it is
possible for Gloria to see an abort when Outel tries to schedule her
transaction and Fred’s. The abort leaks information about Fred’s
purchase at Outel to Gloria. Alternatively, if Gloria is simultane-
ously using her bank account in an unrelated purchase, scheduling
conflicts at the bank might leak to Outel, which could thereby learn
of Gloria’s unrelated purchase.

These concerns are about confidentiality, but transactions may
also create integrity concerns. The bank might choose to abort
transactions to affect the order in which Outel sells chips. Rain-
forest and Outel may not want the bank to have this power.

2.2 Hospital Example

As a second, running example, we use two small programs with
an abort channel. Suppose Patsy is a trusted hospital employee,
running the code in Fig. 3a to collect the addresses of HIV-positive
patients in order to send treatment reminders. Patsy runs her trans-
action on her own computer, which she fully controls, but it in-
teracts with a trusted hospital database on another machine. Patsy
starts a transaction for each patient p, where transaction blocks are
indicated by the keyword atomic. If p does not have HIV, the
transaction finishes immediately. Fig. 3c shows the resulting trans-
action in solid blue. (Events in the transaction are represented as
ovals; arrows represent dependencies between transaction events.)
Otherwise, if the patient has HIV, Patsy’s transaction reads the pa-
tient’s address and prints it (the blue transaction in Fig. 3c, includ-
ing dashed events).

Suppose Mallory is another employee at the same hospital, but is
not trusted to know each patient’s HIV status. Mallory is, however,
trusted with patient addresses. Like Patsy, Mallory’s code runs on
her own computer, which she fully controls, but interacts with the
trusted hospital database on another machine. She runs the code in
Fig. 3b to update each patient’s address in a separate transaction,
resulting in the red transaction in Fig. 3c. When Mallory updates
the address of an HIV-positive patient, her transaction might con-
flict with one of Patsy’s, and Mallory would observe an abort. Thus
Mallory can learn which patients are HIV-positive by updating each
patient’s address while Patsy is checking the patients’ HIV statuses.
Each time one of Mallory’s transactions aborts, private information
leaks: that patient has HIV.

One solution to this problem is to change Patsy’s transaction:
instead of reading the address only if the patient is HIV positive,
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Figure 3: Insecure hospital scenario. Patsy runs a program (3a)
for each patient p. If p has HIV (which is private information),
she prints out p’s address for her records. The resulting transaction
takes one of two forms. Both begin with the event Patsy start. If p
is HIV negative, the transaction ends with Read HIV. Otherwise, it
includes the blue events with dashed outlines. Meanwhile, Mallory
updates the p’s (less secret) address (3b), resulting in the transac-
tion with red, solid-bordered events. This conflicts with Patsy’s
transaction, requiring the system to order the update and the read,
exactly when p has HIV (“?” in 3c).

Patsy reads every patient’s address. This illustrates a core goal of
our work: identifying which programs can be scheduled securely.
In Fig. 4a, lines 3 and 4 of Patsy’s code have been switched. As
Fig. 4c shows, both possible transactions read the patient’s address.
Since Mallory cannot distinguish which of Patsy’s transactions has
run, she cannot learn which patients have HIV.

2.3 Attack Demonstration

Using code resembling Fig. 3, we implemented the attack de-
scribed in our hospital example (§2.2) using the Fabric distributed
system [3, 24]. We ran nodes representing Patsy and Mallory, and
a storage node for the patient records.

To improve the likelihood of Mallory conflicting with Patsy (and
thereby receiving an abort), we had Patsy loop roughly once a sec-
ond, continually reading the address of a single patient after veri-
fying their HIV-positive status. Meanwhile, Mallory attempted to
update the patient’s address with approximately the same frequency
as Patsy’s transaction.

Like many other distributed transaction systems, Fabric uses two-
phase commit. Mallory’s window of opportunity for receiving an
abort exists between the two phases of Patsy’s commit, which ordi-
narily involves a network round trip. However, both nodes were run
on a single computer. To model a cloud-based server, we simulated
a 100 ms network delay between Patsy and the storage node.

We ran this experiment for 90 minutes. During this time, Mal-
lory received an abort roughly once for every 20 transactions Patsy
attempted. As a result, approximately every 20 seconds, Mallory
learned that a patient had HIV. In principle, many such attacks
could be run in parallel, so this should be seen as a minimal, rather
than a maximal, rate of information leakage for this setup.

As described later, our modified Fabric compiler (§ 7) correctly
rejects Patsy’s code. We amended Patsy’s code to reflect Fig. 4, and
our implementation of the staged commit protocol (§ 6) was able
to schedule the transactions without leaking information. Mallory
was no more or less likely to receive aborts regardless of whether
the patient had HIV.

3. SYSTEM MODEL

We introduce a formal, abstract system model that serves as our
framework for developing protocols and proving their security prop-
erties. Despite its simplicity, the model captures the necessary fea-
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Figure 4: Secure hospital scenario. A secure version of Fig. 3,
in which lines 3 and 4 of Patsy’s code (3a) are switched, and the
resulting lines 2 and 3 can be run in parallel ({ || )). Thus the trans-
action reads p’s address regardless of whether p has HIV, and so
Mallory cannot distinguish which form Patsy’s transaction takes.

tures of distributed transaction systems and protocols. As part of
this model, we define what it means for transactions to be serializ-
able and what it means for a protocol to serialize transactions both
correctly and securely.

3.1 State and Events

Similarly to Lamport [23], we define a system state to include
a finite set of events, representing a history of the system up to a
moment in time. An event (denoted e) is an atomic native action
that takes place at a location, which can be thought of as a physical
computer on the network. Some events may represent read oper-
ations (“the variable = had the value 3”), or write operations (‘2
was written into the variable y”). In Figures 3 and 4, for example,
events are represented as ovals, and correspond to lines of code.

Also part of the system state is a causal ordering on events. Like
Lamport’s causality [23], the ordering describes when one event e
causes another event es. In this case, we say e happens before e2,
written as e;—e2. This relationship would hold if, for example,
ey is the sending of a message, and e» its receipt. The ordering
(—) is a strict partial order: irreflexive, asymmetric, and transitive.
Therefore, e;—e2 and ex—>e3 together imply e; —es.

The arrows in Figures 2 to 4 show happens-before relationships
for the transactions involved.

3.2 Information Flow Lattice

We extend Lamport’s model by assigning to each event e a se-
curity label, written £(e), which defines the confidentiality and in-
tegrity requirements of the event. Events are the most fine-grained
unit of information in our model, so there is no distinction between
the confidentiality of an event’s occurrence and that of its contents.
Labels in our model are similar to high and low event sets [30,
10]. In Figures 3 and 4, two security labels, High and Low (H and
L for short), are represented by the events’ positions relative to the
dashed line.

For generality, we assume that labels are drawn from a lattice [12],
depicted in Fig. 5. Information is only permitted to flow upward in
the lattice. We write “¢(e1) is below £(e2)” as £(e1)Cl(ez2), mean-
ing it is secure for the information in e; to flow to es.

For instance, in Fig. 3, information should not flow from any
events labeled H to any labeled L. Intuitively, we don’t want secret
information to determine any non-secret events, because unautho-
rized parties might learn something secret. However, information
can flow in the reverse direction: reading the patient’s address (la-
beled L) can affect Patsy’s printout (labeled H): L T H.

Like events, each location has a label, representing a limit on
events with which that location can be trusted. No event should
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Figure 5: Security lattice: The dot represents a label in the lattice,
and the dashed lines divide the lattice into four quadrants relative
to this label. If the label represents an event, then only events with
labels in quadrant B may influence this event, and this event may
only influence events with labels in quadrant A. If the label rep-
resents a location, then only events with labels in quadrant C' may
occur at that location.

have more integrity than its location. Similarly, no event should
be too secret for its location to know. Thus, in Fig. 5, only events
to the left of a location’s label (i.e., region C in the figure) may take
place at that location.

For example, consider Gloria’s payment event at CountriBank in
the Rainforest example Fig. 1. This event (rs in Fig. 2) represents
money moving from Gloria’s account to Outel’s. The label £ of r5
should not have any more integrity than CountriBank itself, since
the bank controls rs. Likewise, the bank knows about rs, so £
cannot be more confidential than the CountriBank’s label. This
would put £ to the left of the label representing CountriBank in the
lattice of Fig. 5.

Our prototype implementation of secure transactions is built us-
ing the Fabric system [24], so the lattice used in the implementation
is based on the Decentralized Label Model (DLM) [27]. However,
the results of this paper are independent of the lattice used.

3.3 Conflicts

Two events in different transactions may conflict. This is a prop-
erty inherent to some pairs of events. Intuitively, conflicting events
are events that must be ordered for data to be consistent. For exam-
ple, if e; represents reading variable x, and e2 represents writing
z, then they conflict, and furthermore, the value read and the value
written establish an ordering between the events. Likewise, if two
events both write variable x, they conflict, and the system must
decide their ordering because it affects future reads of x.

In our hospital example (Figures 3 and 4), the events Read ad-
dress and Update address conflict. Specifically, the value read will
change depending on whether it is read before or after the update.
Thus for any such pair of events, there is a happens-before (—»)
ordering between them, in one direction or the other.

We assume that conflicting events have the same label. This as-
sumption is intuitive in the case of events that are reads and writes
to the same variable (that is, storage location). Read and write op-
erations in separate transactions could have occurred in either or-
der, so the happens-before relationship between the read and write
events cannot be predicted in advance.

Our notion of conflict is meant to describe direct interaction be-
tween transactions. Hence, we also assume any conflicting events
happen at the same location.

Figure 6: An example system state. The events ro, r1, and r2 form
transaction R, and the events bg, by, and b2 form transaction B.
Event p is not part of either transaction. It may be an input, such
as a network delay event, or part of a protocol used to schedule
the transactions. In this state, r1 —p —b1, which means that ry
happens before b1, and so the transactions are ordered: R—B.

3.4 Serializability and Secure Information Flow

Traditionally a transaction is modeled as a set of reads and writes
to different objects [28]. We take a more abstract view, and model a
transaction as a set of events that arise from running a piece of code.
Each transaction features a start event, representing the decision to
execute the transaction’s code. Start events, by definition, happen
before all others in the transaction. Multiple possible transactions
can feature the same start event: the complete behavior of the trans-
action’s code is not always determined when it starts executing, and
may depend on past system events.

Fig. 4c shows two possible transactions, in blue, that can result
from running the secure version of Patsy’s code. They share the
three events in solid blue, including the start event (Patsy start);
one transaction contains a fourth event, Print address. The figure
also shows in red the transaction resulting from Mallory’s code.
Fig. 6 is a more abstract example, in which rg is the start event of
transaction R, and by is the start event of transaction B.

In order to discuss what it means to serialize transactions, we
need a notion of the order in which transactions happen. We obtain
this ordering by lifting the happens-before relation on events to a
happens-before (—) relation for transactions. We say that transac-
tion 15 directly depends on T, written 11 < 15, if an event in T}
happens before an event in 75:

T, < Ty =

Ty # ToNdey € Th,ex € Th . e1—en

The happens-before relation on transactions (—) is the transitive
closure of this direct dependence relation <. Thus, in Fig. 6, the
ordering R—B holds. Likewise, Fig. 7 is a system state featur-
ing the transactions from our hospital example (Fig. 4), in which
Patsy—Mallory holds.

DEF. 1 (SERIALIZABILITY). Transactions are serializable ex-
actly when happens-before is a strict partial order on transactions.

Any total order consistent with this strict partial order would then
respect the happens-before ordering (—) of events. Such a total
ordering would represent a serial order of transactions.

DEF. 2 (SECURE INFORMATION FLOW). A transaction is in-
formation-flow secure if happens-before (—) relationships between
transaction events—and therefore causality—are consistent with
permitted information flow:

e1—>es — €(€1)EZ(€2)

This definition represents traditional information flow control
within each transaction. Intuitively, each transaction itself can-
not cause a security breach (although this definition says noth-
ing about the protocol scheduling them). In our hospital example,
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Figure 7: A possible system state after running transactions from
Fig. 4c, assuming the patient has HIV, and an exclusive lock is used
to order the transactions. (Events prior to everything in both trans-
actions are not shown.) Because Patsy acquires the lock first, the
transactions are ordered Patsy—Mallory. While each transaction
is information-flow secure (a property of events within a transac-
tion), when Patsy releases the lock after her transaction, a high se-
curity event happens before a low security one. We discuss secure
scheduling protocols in §6.

Patsy’s transaction in Fig. 3c is not information-flow secure, since
Read HIV happens before Read address, and yet the label of Read
HIV, H, does not flow to the label of Read address, L. However, in
the modified, secure version (Fig. 4c), there are no such insecure
happens-before relationships, so Patsy’s transaction is secure.

3.5 Network and Timing

Although this model abstracts over networks and messaging, we
consider a message to comprise both a send event and a receive
event. We assume asynchronous messaging: no guarantees can be
made about network delay. Perhaps because this popular assump-
tion is so daunting, many security researchers ignore timing-based
attacks. There are methods for mitigating leakage via timing chan-
nels [22, 4, 7] but in this work we too ignore timing.

To model nondeterministic message delay, we introduce a net-
work delay event for each message receipt event, with the same
label and location. The network delay event may occur at any time
after the message send event. It must happen before (—) the cor-
responding receipt event. In Fig. 6, event ry could represent send-
ing a message, event p could be the corresponding network delay
event, which is not part of any transaction, and event by could be
the message receipt event. Fig. 6 does not require p to be a network
delay event. It could be any event that is not part of either transac-
tion. For example, it might be part of some scheduling protocol.

3.6 Executions, Protocols, and Inputs

An execution is a start state paired with a totally ordered se-
quence of events that occur after the start state. This sequence must
be consistent with happens-before (—). Recall that a system state
is a set of events (§3.1). Each event in the sequence therefore cor-
responds to a system state containing all the events in the start state,

and all events up to and including this event in the sequence. View-
ing an execution as a sequence of system states, an event is sched-
uled if it is in a state, and once it is scheduled, it will be scheduled
in all later states. Two executions are equivalent if their start states
are equal, and their sequences contain the same set of events, so
they finish with equal system states (same set of events, same —).
A full execution represents the entire lifetime of the system, so its
start state contains no events.

For example, Fig. 8 illustrates two equivalent full executions
ending in the system state from Fig. 6.

A transaction scheduling protocol determines the order in which
each location schedules the events of transactions. Given a set of
possible transactions, a location, and a set of events representing
a system state at that location, a protocol decides which event is
scheduled next by the location:

protocol : set (Transactions) x Location x State — event

Protocols can schedule an event from a started (but unfinished)
transaction, or other events used by the protocol itself. In order to
schedule transaction events in ways that satisfy certain constraints,
like serializability, protocols may have to schedule additional events,
which are not part of any transaction. These can include message
send and receipt events. For example, in Fig. 7, the locking events
are not part of any transaction, but are scheduled by the protocol in
order to ensure serializability.

Certain kinds of events are not scheduled by protocols, because
they are not under the control of the system. Events representing
external inputs, including the start events of transactions, can hap-
pen at any time: they are fundamentally nondeterministic. We also
treat the receive times of messages as external inputs. Each mes-
sage receive event is the deterministic result of its send event and
of a nondeterministic network delay event featuring the same secu-
rity label as the receive event. We refer to start and network delay
events collectively as nondeterministic input events (NIEs).

Protocols do not output NIEs. Instead, an NIE may appear at
any point in an execution, and any prior events in the execution
can happen before (—) the NIE. Recall that an execution features
a sequence of events, each of which can be seen as a system state
featuring all events up to that point. An execution E is consistent
with a protocol p if every event in the sequence is either an NIE, or
the result of p applied to the previous state at the event’s location.
We sometimes say p results in E to mean “F is consistent with p.”

As an example, assume all events in Fig. 6 have the same location
L, and no messages are involved. Start events ro and bo are NIEs.
Every other event has been scheduled by a protocol. Fig. 8 shows
two different executions, which may be using different protocols,
determining which events to schedule in each state. We can see that
in the top execution of Fig. 8, the protocol maps:

{R,B,...},L,{I‘o}’—) r
{R,B,...},L,{ro,r1} — r2
{I{,,]B,...},L7 {I‘o,rl,rz,bo})—) P
{R,B,...},L,{I‘o,l‘l,rz,bo,p}*—) b1
{R,B,...},L,{I‘o,r‘1,r27b07p,b1}>—> b2

The protocol in the bottom execution of Fig. 8 maps:

{R,B,.“},L7{I‘0,b0}b—) r1
{R,B,...},L,{ro,bo,r1} — p
{R,B,...},L,{ro,bo,r1,p} — b1
{R,B,...},L,{ro,bo,r1,p,b1} — b2
{R,B,...},L,{ro,bo,r1,p,b1,b2} — r2

Ultimately, a protocol must determine the ordering of transac-
tions. If the exact set of start events to be scheduled (as opposed
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Figure 8: Two equivalent full executions for the system state from Fig. 6. Each begins with a start state (the empty set for full executions),
followed by a sequence of events, each of which corresponds to the resulting system state.

to start events possible) were always known in advance, scheduling
would be trivial. A protocol should not require one transaction to
run before another a priori: start events from any subset of pos-
sible transactions may be scheduled at any time. No protocol
should result in a system state in which such a start event cannot be
scheduled, or an incomplete transaction can never finish.

3.7 Semantic Security Properties

Consider an observer who can only “see” events at some security
level £ or below. If two states S7 and S5 are indistinguishable to the
observer, then after a program runs, noninterference requires that
the resulting executions remain indistinguishable to the observer.
Secret values, which the observer cannot see, may differ in S; and
S2, and may result in different states at the end of the executions,
but the observer should not be able to see these differences.

3.7.1 Relaxed Observational Determinism

Semantic conditions for information security are typically based
on some variant of noninterference [19, 31]. These variants are
often distinguished by their approaches to nondeterminism. How-
ever, many of these semantic security conditions fail under refine-
ment: if some nondeterministic choices are fixed, security is vio-
lated [37]. However, low-security observational determinism [30,
37] is a strong property that is secure under refinement: intuitively,
if an observer with label ¢ cannot distinguish states S and S’, that
observer must not be able to distinguish any execution £ beginning
with S from any execution E’ beginning with S’:

(S~ 8)=E~ E

This property is too strong because it rules out two sources of non-
determinism that we want to allow: first, the ability of any transac-
tion to start at any time, and second, network delays. Therefore, we
relax observational determinism to permit certain nondeterminism.
We only require that executions be indistinguishable to the observer
if their NIEs are indistinguishable to the observer:

(S~¢S" A NIE(E)=~¢NIE(E')) = E =y E'

We call this relaxed property relaxed observational determinism.
It might appear to be equivalent to observational determinism, but
with the NIEs encoded in the start states. This is not the case. If
NIEs were encoded in the start states, protocols would be able to
read which transactions will start and when messages will arrive in
the future. Therefore relaxed observational determinism captures
something that observational determinism does not: unknowable
but “allowed” nondeterminism at any point in an execution.

By deliberately classifying start events and network delays as in-
put, we allow certain kinds of information leaks that observational
determinism would not. Specifically, a malicious network could
leak information by manipulating the order or timing of message
delivery. However, such a network could by definition communi-
cate information to its co-conspirators anyway. Information can

also be leaked through the order or timing of start events. This
problem is beyond the scope of this work.

Conditioning the premise of the security condition on the indis-
tinguishability of information that is allowed to be released is an
idea that has been used earlier [32], but not in this way, to our
knowledge.

In our hospital example, as illustrated in Fig. 4, the system de-
termines which of Patsy’s transactions (the one with the dashed
events, or the one without the dashed events) will run based on
whether p.hasHiv is true. We can consider p.hasHiv’s value to
be a high-security event that happens before all reads of p. hasHiv.
If we classify this past high-security event as input, and all low-
security events as low-observable for Mallory, then we must en-
sure that when Patsy’s code runs, the low-security projections of
resulting executions are always the same, regardless of whether
p.hasHiv. Patsy’s possible transactions in Fig. 4 allow for ob-
servational determinism, while her transactions in Fig. 3 do not,
since whether or not Read address occurs depends on p.hasHiv.
Whether or not the system actually maintains observational deter-
minism, however, depends on the protocol scheduling the events.

DEF. 3 (PROTOCOL SECURITY). A protocol is considered se-
cure if the set of resulting executions satisfies relaxed observational
determinism for any allowed sets of information-flow secure trans-
actions and any possible NIEs.

4. IMPOSSIBILITY

One of our contributions is to show that even in the absence of
timing channels, there is a fundamental conflict between secure
noninterference and serializability. Previous results showing such
a conflict, for example the work of Smith et al. [36] consider only
confidentiality and show only that timing channels are unavoidable.

THEOREM 1  (IMPOSSIBILITY). No secure protocol® can se-
rialize all possible sets of information-flow secure transactions.’

We assume protocols cannot simply introduce an arbitrarily trusted
third party; a protocol must be able to run using only the set of
locations that have events being scheduled.

PROOF SKETCH. Consider the counterexample shown in Fig. 9.
Alice and Bob are both cloud computing providers who keep strict
logs of the order in which various jobs start and stop. Highly trusted
(possibly government) auditors may review these logs, and check
for consistency, to ensure cloud providers are honest and fair. As

“barring unforeseen cryptographic capabilities (§4.1)

3In fact, what we prove is stronger. Our proof holds for even pos-
sibilistic security conditions [25], which are weaker than relaxed
observational determinism (see technical report [34]). No proto-
col whose resulting traces satisfy even this weaker condition can
serialize all sets of information-flow secure transactions.



Figure 9: Transactions that cannot be securely serialized. Dave’s
transaction includes rg, ry1, r2, and rz. Carol’s includes bg, b1,
b2, and bs. Cloud providers Alice and Bob must decide how to
order their events. Alice and Bob may not influence each other, and
Carol and Dave may not influence each other, as represented by the
wall. For these transactions to be serializable, Alice’s ordering of
r2 and bz must agree with Bob’s ordering of r3 and bs.

competitors, Alice and Bob do not want each other to gain any in-
formation about their services, and do not trust each other to affect
their own services.

Carol and Dave are presently running jobs on Alice’s cloud. Both
Carol and Dave would like to stop their jobs on Alice’s cloud, and
start new ones on Bob’s cloud. Each wants to do this atomically,
effectively maintaining exactly one running job at all times. Carol
and Dave consider their jobs to be somewhat confidential; they do
not want each other to know about them. Unlike the example from
Fig. 1, Dave and Carol’s transactions do not go through a third
party like Rainforest. For the transactions to be serializable, Alice’s
ordering of the old jobs stopping must agree with Bob’s ordering
of the new jobs starting.

In any system with an asynchronous network, it is possible to
reach a state in which Carol’s message to Alice has arrived, but not
her message to Bob, and Dave’s message to Bob has arrived, but
not his message to Alice. In this state, neither Alice nor Bob can
know whether one or both transactions have begun. It is impossi-
ble for either to communicate this information to the other without
violating relaxed observational determinism. Specifically, any pro-
tocol that relayed such information from one cloud provider to the
other would allow the recipient to distinguish the order of message
delivery to the other cloud provider. That ordering is considered se-
cret input, and so this would be a security violation. All executions
with identical start states, and identical inputs visible to Alice, but
differently ordered network delay events at Bob, which are inputs
invisible to Alice, would become distinguishable to Alice. [J

4.1 Cryptography

This essentially information-theoretic argument does not account
for the possibility that some protocol could produce computation-
ally indistinguishable traces that are low-distinguishable with suffi-
cient computational power (e.g., to break encryption). However, we
are unaware of any cryptographic protocols that would permit Al-
ice and Bob to learn a consistent order in which to schedule events
without learning each other’s confidential information.

S. ANALYSIS

Although secure scheduling is impossible in general, many sets
of transactions can be scheduled securely. We therefore investigate
which conditions are sufficient for secure scheduling, and what pro-
tocols can function securely under these conditions.

5.1 Monotonicity

A relatively simple condition suffices to guarantee schedulabil-
ity, while preserving relaxed observational determinism:

DEF. 4 (MONOTONICITY). A transaction is monotonic if it
is information-flow secure and its events are totally ordered by
happens-before (—).

THEOREM 2 (MONOTONICITY = SCHEDULABILITY).
A protocol exists that can serialize any set of monotonic transac-
tions and preserve relaxed observational determinism.

PROOF SKETCH. Monotonicity requires that each event must be
allowed to influence all future events in the transaction. A simple,
pessimistic transaction protocol can schedule such transactions se-
curely. In order to define this protocol, we need a notion of locks
within our model.

Locks. A lock consists of an infinite set of events for each al-
lowed transaction. A transaction acquires a lock by scheduling any
event from this set. It releases a lock by scheduling another event
from this set. Thus, in a system state S, a transaction T holds a
lock if S contains an odd number of events from the lock’s set cor-
responding to 7. No correct protocol should result in a state in
which multiple transactions hold the same lock. All pairs of events
in a lock conflict, so scheduled events that are part of the same lock
must be totally ordered by happens-before (—). All events in a
lock share a location, which is considered to be the location of the
lock itself. Likewise, all events in a lock share a label, which is
considered to be the label of the lock itself.

A critical property for transaction scheduling is deadlock free-
dom [17, 35], which requires that a protocol can eventually sched-
ule all events from any transaction whose start event has been sched-
uled. A system enters deadlock when it reaches a state after which
this is not the case. For example, deadlock happens if a protocol re-
quires two transactions each to wait until the other completes: both
will wait forever. If all transactions are finite sets of events (i.e.,
all transactions can terminate), then deadlock freedom guarantees
that a system with a finite set of start events eventually terminates,
a liveness property.

We now describe a deadlock-free protocol that can securely se-
rialize any set of monotonic transactions, and preserve relaxed ob-
servational determinism:

e Each event in each transaction has a corresponding lock, ex-
cept start events.

e Any events that have the same label share a lock, and this
lock shares a location with at least one of the events. Con-
flicting events are assumed to share a label (§3.4).

e A transaction must hold an event’s lock to schedule that event.

e A transaction acquires locks in sequence, scheduling events
as it goes. Since all events are ordered according to a global
security lattice, all transactions that acquire the same locks
do so in the same order. Therefore they do not deadlock.

e If a lock is already held, the transaction waits for it to be
released.



e When all events are scheduled, the transaction commits, re-
leasing locks in reverse order. Any messages sent as part of
the transaction would thus receive a reply, indicating only
that the message had been received, and all its repercussions
committed. We call these replies commit messages.

e For each location, the protocol rotates between all uncommit-
ted transactions, scheduling any intermediate events (such as
lock acquisitions) until it either can schedule one event in the
transaction or can make no progress, and then rotates to the
next transaction.

Security Intuition. Acquiring locks shared by multiple events on
different locations requires a commit protocol between those loca-
tions. However, this does not leak information because all locations
involved are explicitly allowed to observe and influence all events
involved. Therefore several known commit protocols will do, in-
cluding 2PC. Since the only messages sent as part of the protocol
are commit messages, and each recipient knows it will receive a
commit message by virtue of sending a message in the protocol,
no information (other than timing) is transferred by the scheduling
mechanism itself. []

5.2 Relaxed Monotonicity

Monotonicity, while relatively easy to understand, is not the weak-
est condition we know to be sufficient for secure schedulability. It
can be substantially relaxed. In order to explain our weaker condi-
tion, relaxed monotonicity, we first need to introduce a concept we
call visibility:

DEF. 5 (VISIBLE-TO). An event e in transaction T is visible
to a location L if and only if it happens at L, or if there exists
another event €' € T at L, such that e—¢’.

DEF. 6 (RELAXED MONOTONICITY). A transactionT satis-
fies relaxed monotonicity if it is information-flow secure and for
each location L, all events in T visible to L happen before all
events in T' not visible to L.

In §6, we demonstrate that relaxed monotonicity guarantees schedu-

lability. Specifically, we present a staged commit protocol, and
prove that it schedules any set of transactions satisfying relaxed
monotonicity, while preserving relaxed observational determinism
(Thm. 4).

5.3 Requirements for Secure Atomicity

Monotonicity and relaxed monotonicity are sufficient conditions
for a set of transactions to be securely schedulable. Some sets of
transactions meet neither condition, but can be securely serialized
by some protocol. For example, any set of transactions that each
happen entirely at one location can be securely serialized if each
location schedules each transaction completely before beginning
the next. We now describe a relatively simple condition that is
necessary for any set of transactions to be securely scheduled.

Decision Events and Conflicting Events

In order to understand this necessary condition, we first describe
decision events and conflicting events.

Borrowing some terminology from Fischer, Lynch, and Pater-
son [18], for a pair of transactions 77 and 75, any system state is
either bivalent or univalent. A system state is bivalent with respect
to 71 and T if there exist two valid executions that both include
that state, but end with opposite orderings of 77 and 7. A sys-
tem state is univalent with respect to 71 and 75 otherwise: for one

ordering of the transactions, no valid execution ending with that
ordering contains the state.

We can define a similar relationship for start events: for any pair
of distinct start events s1 and sz, a system state is bivalent with re-
spect to those events if it features in two valid executions, both of
which have s; and s2 in scheduled transactions, but those transac-
tions are in opposite order. A system state is univalent with respect
to s1 and s otherwise.

All full executions (i.e., those starting with an empty state) that
order a pair of transactions begin in a bivalent state with respect to
their start events, before either is scheduled. By our definition of se-
rializability and transaction ordering, once transactions are ordered,
they cannot be un-ordered. Any execution that orders the transac-
tions therefore ends in a univalent state with respect to their start
events. Any such execution consists of a sequence of O or more bi-
valent states followed by a sequence of univalent states. The event
that is scheduled in the first univalent state, in a sense, decides the
ordering of the transactions. We call it the decision event.

We call any event in T or T% that conflicts with an event in the
other transaction a conflicting event.

LEMMA 1 (DECISION EVENT — CONFLICTING EVENTS).
For any univalent state S with T1—T%, there exists a full execution
FE ending in S featuring a decision event eq that happens before
(—) all conflicting events in T and Ts (other than eq itself, if eq is
a conflicting event).

PROOF SKETCH. We show that the contradiction implies an in-
finite chain of equivalent executions with earlier and earlier non-
decision conflicting events, which is impossible given that system
states are finite. []

We show that two fundamental system state properties are nec-
essary for secure scheduling:

DEF. 7 (FIRST-PRECEDES-DECISION). State S satisfies First-
Precedes-Decision if, for any pair of transactions T and T3 in S
with Th—T5, there is a full execution E ending in S with a decision
event eq that either is in Th, or happens after an event in T.

DEF. 8 (DECISION-PRECEDES-SECOND). A state S satisfies
Decision-Precedes-Second if; for any pair of transactions T and
Ty in S with Ty —T, there is a full execution E' ending in S with
a decision event e}y, such that no event in Ty happens before €.

Therefore, for a protocol to be secure, it must ensure resulting
system states have these properties.

THEOREM 3 (NECESSARY CONDITION). Any secure, dead-
lock-free protocol p must ensure that all full executions consistent
with p feature only states satisfying both First-Precedes-Decision
and Decision-Precedes-Second.

PROOF. Given T1—T%, any execution E’ ending in S features a
decision event e4. Decision events for the same pair of transactions
in equivalent executions must agree on ordering, by the definition
of equivalent execution. If 71 does not contain E’s decision event,
ed, or any event that happens before eq, then there exists an equiv-
alent execution in which e4 is scheduled before any events in 7%
or T5. This execution would imply the existence of a system state
in which no event in either transaction is scheduled, but it is im-
possible to schedule 7% before T, regardless of inputs after that
state. If, after this state, the start event for 75 were scheduled, but
not the start event for 77, then 7> cannot be scheduled. This con-
tradicts a the deadlock-freedom requirement: no protocol should



result in a system state in which a supported transaction can never
be scheduled.

Therefore some event in 77 either is or happens before e for
some full execution E ending in S.

If T and T% conflict, then efi either is an event in 7% or happens
before an event in 77, by Lemma 1. If an event e; € 75 happens
before e/}, then either e}, € T1, and

’
ex2—>eq = To—Ty

which is impossible, by the definition of happens-before, or
Je; € Ty.ej—eq, and

’
ex—>ey—>€e1 = ex—>e1 = To—Th

which is also impossible, by the definition of happens-before.

If T and 7% do not conflict, then the only way 77 —75 implies
that there exists some chain 11 —+13—Ty— ... =1, —T5 such that
and each transaction in the chain conflicts with the next. Therefore,
by the above proof, an equivalent execution exists in which each
transaction in the chain contains the decision event for ordering it-
self and the following transaction, and no events in the following
transaction are before that decision event.

Therefore there exists some equivalent execution E’ in which
no event in 7% happens before the decision event e, deciding the
ordering between T4 and 7. [

Although Thm. 3 may seem trivial, it represents some impor-
tant conclusions: No protocol can make any final ordering decision
until at least one transaction involved has begun. Furthermore, it is
impossible for the later transaction to determine the decision. Truly
atomic transactions cannot include any kind of two-way interaction
or negotiation for scheduling.

6. THE STAGED COMMIT PROTOCOL

We now present the staged commit protocol (SC) and prove that
it is secure, given transactions satisfying relaxed monotonicity.

SC is a hybrid of traditional serialization protocols, such as 2PC,
and the simple pessimistic protocol described in the proof of Thm. 2.
Compared to our simple pessimistic protocol, it allows a broader
variety of transactions to be scheduled (relaxed monotonicity vs.
regular monotonicity), which in turn allows more concurrency. A
transaction is divided into sfages, each of which can be securely
committed using a more traditional protocol. The stages them-
selves are executed in a pessimistic sequence.

Each event scheduled is considered to be either precommitted
or committed. We express this in our model by the presence or
absence of an “isCommitted” event corresponding to every event
in a transaction. Intuitively, a precommitted event is part of some
ongoing transaction, so no conflicting events that happen after a
precommitted event should be scheduled. A committed event, on
the other hand, is part of a completed transaction; conflicting events
that happen after a committed event can safely be scheduled. Once
an event is precommitted, it can never be un-scheduled. It can only
change to being committed. Once an event is committed, it can
never change back to being precommitted.

e The events of each transaction are divided into stages. Each
stage will be scheduled using traditional 2PC, so aborts within
a stage will be sent to all locations involved in that stage.

To divide the events into stages, we establish equivalence
classes of the events’ labels. Labels within each class are
equivalent in the following sense: when events with equiva-
lent labels are aborted, those aborts can securely flow to the
same set of locations. An event’s abort can always flow to the

event’s own location, so locations involved in a stage can se-
curely ensure the atomicity of the events in that stage. Since
conflicting events have the same security labels, they will
be in the same equivalence class. We call these equivalence
classes conflict labels (cl).

e Each stage features events of the same conflict label, and is
scheduled with 2PC. One location must coordinate the 2PC.
All potential aborts in the stage must flow to the coordina-
tor, and some events on the coordinator must be permitted to
affect all events in the stage. Relaxed monotonicity implies
that at least one such location exists for each conflict label.

When a stage tries to schedule an event, but finds a precom-
mitted conflicting event, it aborts the entire stage. Because
conflicting events have the same label, these aborts cannot
affect events on unpermitted locations.

When a stage’s 2PC completes, the events in the stage are
scheduled, and considered precommitted.

e Each transaction precommits its stages as they occur. To
avoid deadlock, we must ensure that whenever two transac-
tions feature stages with equal conflict labels, they precom-
mit those stages in the same order. Therefore, the staged
commit protocol assumes an ordering of conflict labels. This
can be any arbitrary ordering, so long as (1) it totally orders
the conflict labels appearing in each transaction, and (2) all
transactions agree on the ordering.

e When all stages are precommitted, all events in the trans-
action can be committed. Commit messages to this effect
are sent between locations, backwards through the stages.
Whenever an event in one stage triggers an event in the next,
the locations involved can be sure a commit message will take
the reverse path. The only information conveyed is timing.

Because events in a precommitted stage cannot be un-scheduled
or “rolled back”, a participant that is involved only in an earlier
stage is prevented from gleaning any information about later stages.
The participant will only learn, eventually, that it can commit.

Patsy’s transaction in Fig. 4c has at least two stages when the
patient has HIV:

1. Patsy begins the transaction (Patsy start), and reads the ad-
dress (Read Address). This stage will be atomically precom-
mitted, and this precommit process will determine the rela-
tive ordering of Patsy’s transaction and Mallory’s, indepen-
dent of more secret events.

2. Patsy finds that the patient has HIV (Read HIV), and prints
the patient’s address (Print address).

THEOREM 4 (SECURITY OF SC). Any set of transactions sat-
isfying relaxed monotonicity are serialized by SC securely without
deadlock.

PROOF SKETCH. Security. SC preserves relaxed observational
determinism. Intuitively, any information flows that it adds are al-
ready included in the transaction.

SC adds no communication affecting security:

e Communication within each stage is strictly about events that
all participants can both observe.

e For each pair of consecutive stages, at least one participant
from the first stage can notify a participant in the second



stage securely, when it is time for the second stage to be-
gin. Relaxed monotonicity ensures the second stage contains
an event that happens after an event in the first stage, repre-
senting a line of communication.

e Communication for commits can safely proceed in reverse
order of stages. Each participant knows when it precommits
exactly which commit messages it will receive.

Serializability. Our proof is built around the following lemma:
any execution in which an event in a transaction is committed fea-
tures a system state in which all events in the transaction are pre-
committed. This lemma is used to show that SC guarantees a strict
partial order of transactions, and therefore serializability.

Deadlock Freedom. Deadlock cannot form within any stage,
since stages use 2PC, which preserves deadlock freedom. The
stages themselves, like locks in our proof of Thm. 2, are precom-
mitted in a consistent order, guaranteeing deadlock freedom. [

The Importance of Optimism

SC specifies only a commit protocol. Actual computation (which
generates the set of events) for each transaction can be done in
advance, optimistically. If one stage precommits and the next is
blocked by a conflicting transaction, optimistically precomputed
events would have to be rolled back. However, no precommit-
ted event need be rolled back. In fact, it would be insecure to do
s0. Thus SC allows for partially optimistic transactions with partial
rollback.

Our model requires only that a transaction be a set of events. In
many cases, however, it is not possible to know which transaction
will run when a start event is scheduled. For example, a transaction
might read a customer’s banking information from a database and
contact the appropriate bank. It would not be possible to know
which bank should have an event in the transaction beforehand. If
a system attempted to read the banking information prior to the
transaction, then serializability is lost: the customer might change
banks in between the read and the transaction, and so one might
contact the wrong bank.

Optimism solves this problem: events are precomputed, and when
an entire stage is completed, that stage’s 2PC begins. This means
that optimism is not just an optimization; it is required for secure
scheduling in cases where the transactions’ events are not known
in advance.

7. IMPLEMENTATION

We extended the Fabric language and compiler to check that
transactions can be securely scheduled, and we extended the Fabric
runtime system to use SC. Fabric and IFDB [33] are the two open-
source systems we are aware of that support distributed transac-
tions on persistent, labeled data with information flow control. Of
these, we chose Fabric for its static reasoning capabilities. IFDB
checks labels entirely dynamically, so it cannot tell if a transaction
is schedulable until after it has begun.

7.1 The Fabric Language

The Fabric language is designed for writing distributed programs
using atomic transactions that operate on persistent, Java-like ob-
jects [24]. It has types that label each object field with information
flow policies for confidentiality and integrity. The compiler uses
these labels to check that Fabric programs enforce a noninterfer-
ence property. However, like all modern systems built using 2PC,
Fabric does not require that transactions be securely scheduled ac-
cording to the policies in the program. Consequently, until now,
abort channels have existed in Fabric.

1 atomic { PC Possible conflictors
2 String{{} p = post.read(); L {Alice, Bob,Carol}
3 Comments{{'} c; il -

4 if (p.contains("fizz")) { L -

5 c.write("buzz"); ¢ {Alice,Carol}

6 if (p.contains("buzz")) { L -

; c.write("fizz"); ¢ {Alice,Carol}
93 ’

Figure 10: Carol’s program in our Blog example: Carol reads a
post with label ¢, and depending on what she reads, writes a com-
ment with label ¢'. Label ¢ permits Alice, Bob, and Carol to read
the post, while ¢’ keeps the Comments more private and allows only
Alice and Carol to view or edit.

We leverage these security labels and extend the compiler to ad-
ditionally check that transactions in a Fabric program are mono-
tonic (§5). This implementation prevents confidentiality breaches
via abort channels. Preventing integrity breaches would require
further dynamic checks, which we leave to future work.

7.2 Checking Monotonicity

Our modification to the Fabric compiler enforces relaxed mono-
tonicity (Def. 6). Our evaluation (§ 8) shows that enforcing this
condition does not exclude realistic and desirable programs. Our
changes to the Fabric compiler and related files include 4.1k lines
of code (out of roughly 59k lines).

7.2.1 Events and Conflict Labels in Fabric

The events in the system model (§ 3) are represented in our im-
plementation by read and writes on fields of persistent Fabric ob-
jects. The label of the field being read or written corresponds to the
event labels in our model.

SC (§6) divides events into stages based on conflict labels (c1).
In our implementation, we define the c1 of an event e to correspond
to the set of principals authorized to read or write the field that is
being accessed by e. If e is a write event, this set contains ex-
actly those principals that can perform a conflicting operation (and
thereby receive an abort); if e is a read event, the set is a conserva-
tive over-approximation, since only the writers can conflict.

Fig. 10 presents a program in which Carol schedules two events
within a single transaction. First, she reads a blog post with security
label ¢. Second, she writes a comment (whose content depends
on that of the post) with label ¢'. Since ¢ permits Alice, Bob, or
Carol to read the post, the cl of the first event includes all three
principals. However, only Alice and Carol can read or write the
comment, so when Carol goes to write it, only Alice or another
transaction acting on behalf of Carol could cause conflicts. The cl
of the write therefore includes only Alice and Carol.

7.2.2  Program Counter Label

The program counter label (pc) [13] labels the program context.
For any given point in the code, the pc represents the join (least
upper bound) of the labels of events that determine whether or not
execution reaches that point in the code. These events include those
occurring in if-statement and loop conditionals. For instance, in
Fig. 10, whether line 5 runs depends on the value of p, which has
label ¢. Therefore, the fact that line 5 is executing is as secret as p,
and the pc at line 5 is 4.

SC requires that when events with the same c1 are aborted, those
aborts can securely flow to the same set of locations. When an
event causes an abort, the resulting abort messages carry informa-
tion about the context in which the event occurs. Therefore, we
enforce the requirement by introducing a constraint on the program



context in which events may occur: the pc must flow to the princi-
pals in the conflict label.

pc Ccl (D

Eliding the details of how Fabric’s labels are structured, in Fig. 10,
L flows to everything, and £, the label of the blog post, does flow
to the conflict label, indicating that both Alice and Carol can cause
a conflict. Therefore, Eqn. (1) holds on lines 2, 5, and 7.

7.2.3 Ordering Stages

Each stage consists of operations with the same cl. To ensure
all transactions precommit conflicting stages in the same order, we
adopt a universal stage ordering:

principals(cl;) 2 principals(clit1) 2)

The set of principals in each stage must be a strict superset of the
principals in the next one. This ensures that unrestricted infor-
mation can be read in one stage and sensitive information can be
modified in a later stage in the same transaction. In the hospital
example (Fig. 4), Read HIV has a conflict label that only includes
trusted personnel, while Read address has a conflict label that in-
cludes more hospital staff. As a result, our implementation requires
that Read address be staged before Read HIV in Patsy’s transaction.

In Fig. 10, our stage ordering means that the read on line 2, with
a cl of {Alice, Bob, Carol} belongs in an earlier stage than the
write, which features a c1 of only { Alice, Carol}.

7.2.4 Method Annotations

To ensure modular program analysis and compilation, each method

is analyzed independently. Fabric is an object-oriented language
with dynamic dispatch, so it is not always possible to know in
advance which method implementation a program will execute.
Therefore, the exact conflict labels for events within a method call
are not known at compile time. In order to ensure each atomic pro-
gram can divide into monotonic stages, we annotate each method
with bounds on the conflict labels of operations within the method.
These annotations are the security analogue of argument and return
types for methods.

7.3 Implementing SC

We extended the Fabric runtime system to use SC instead of tra-
ditional 2PC, modifying 2.4k lines of code out of a total of 24k lines
of code in the original implementation. Specifically, we changed
Fabric’s 2PC-based transaction protocol so that it leaves each stage
prepared until all stages are ready, and then commits.

Since Fabric labels can be dynamic, the compiler statically deter-
mines potential stagepoints—points in the program that may begin
a new stage—along with the conflict labels of the stages immedi-
ately surrounding the potential stagepoint. If the compiler cannot
statically determine whether the conflict labels before and after a
stagepoint will be different, it inserts a dynamic equivalence check
for the two labels. At run time, if the two labels are not equivalent,
then a stage is ending, and the system precommits all operations
made thus far. To precommit a stage, we run the first (“prepare”)
phase of 2PC. If there is an abort, the stage is re-executed until it
eventually precommits.

In Fig. 10, there is a potential stagepoint before lines 4 and 6,
where the next operation in each case will not include Bob as a
possible conflictor. The conflict labels surrounding the potential
stagepoint are { Alice, Bob, Carol} (from reading the post on line
2) and {Alice, Carol} (from writing the comment on either line
4 or 6). If another transaction caused the first stage to abort, then

Data item Readers Writers
Gloria’s account balance | Bank, Gloria Bank
Item price (public) Outel
Inventory Outel Outel

Figure 11: Example policies for the Rainforest application.

Carol’s code would rerun up to line 4 or 6 until it could precommit,
and then the remainder of the transaction would run.

8. EVALUATION

To evaluate our implementation, we built three example Fabric
applications, and tested them using our modified Fabric compiler:

e an implementation of the hospital example from §2;

e a primitive blog application (from which Fig. 10 was taken),
in which participants write and comment on posts with pri-
vacy policies; and

e an implementation of the Rainforest example from §2.

8.1 Hospital

We implemented the programs described in our hospital example
(Fig. 3). In the implementation, Patsy’s code additionally appends
the addresses of HIV-positive patients to a secure log. In a third
program, another trusted participant reads the secure log.

With our changes, the compiler correctly rejects Patsy’s code.
We amended her code to reflect Fig. 4. Of the 350 lines of code,
we had to change a total of 113 to satisfy relaxed monotonicity and
compile. Of these 113 lines, 23 were additional method annotations
and the remaining 90 were the result of refactoring the transaction
that retrieves the addresses of HIV-positive patients. SC scheduled
the transactions without leaking information. The patient’s HIV
status made Mallory neither more nor less likely to receive aborts.

8.2 Blog

In our primitive blog application, a store holds API objects, each
of which features blog posts (represented as strings) with some se-
curity label, and comments with another security label. These la-
bels control who can view, edit, or add to the posts and comments.

In one of our programs, the blog owner atomically reads a post
and updates its text to alternate between “fizz” and “buzz”. In an-
other program, another user comments on the first post (Fig. 10).
To keep this comment pertinent to the content of the post, reading
the post and adding the comment are done atomically. Since posts
and comments have different labels, this transaction has at least two
stages: one to read the post, and another to write the comment.

We were able to compile and run these programs with our mod-
ified system with relatively few changes. Of the 352 lines of code,
we had to change a total of 50, primarily by adding annotations to
method signatures (§7.2.4).

8.3 Rainforest

We implemented the Rainforest example from §2.1. In our code,
two nodes within Rainforest act with Rainforest’s authority. They
perform transactions representing the orders of Gloria and Fred
from Fig. 1. Each transaction updates inventory data stored at one
location, and banking data stored at another. Fig. 11 gives examples
of the policies for price, inventory, and banking data.

While attempting to modify this code to work with SC, we dis-
covered that the staging order chosen in § 7.2.3 makes it impossi-
ble to provide the atomicity of the original application while both
meeting its security requirements and ensuring deadlock freedom.

To illustrate, suppose Gloria is purchasing an item from Outel.
To ensure she is charged the correct price, the event that updates



Example | Program SC - ZPC.
# stages | Dyn. checks | Total time | Total time
Hospital | patsy 3 0.45 ms 9.17 ms 6.38 ms
Blog post 2 0.11 ms 1.03 ms 1.01 ms
comment 3 0.29 ms 1.30 ms 1.01 ms

Figure 12: Performance overhead of SC. Reported times are per-transaction averages, across three 5S-minute runs of the blog application and
three 20-minute runs of the hospital application. Relative standard error of all measurements is less than 2%.

the inventory must share a transaction with the one that debits Glo-
ria’s bank account. The conflict label for the inventory event cor-
responds to {Outel}, whereas the conflict label for the debit event
corresponds to {Bank, Gloria}. Since neither is a subset of the
other, the compiler cannot put them in the same transaction.

These difficulties in porting the Rainforest application arise be-
cause Fabric is designed to be an open system, and so an a pri-
ori choice of staging order must be chosen. If the application
were written as part of a closed system, deadlock freedom can be
achieved by picking a staging order that works for this particular
application (e.g., {Outel} before {Bank, Gloria}), but it might
be difficult to extend the system with future applications.

8.4 Overhead

The staged commit protocol adds two main sources of overhead
compared to traditional 2PC. First, each stage involves a round trip
to prepare the data manipulated during the stage, leading to over-
head that scales with the number of stages and with network la-
tency. Second, as described in § 7.3, dynamic labels result in po-
tential stagepoints, which must be resolved using run-time checks.
The number of checks performed depends on how well the com-
piler’s static analysis predicts potential stagepoints.

We measured this overhead in our implementation on an Intel
Core i7-2600 machine with 16 GiB of memory, using the transac-
tions in our examples. The post and comment transactions in the
blog example were each run continually for 15 minutes, and Patsy’s
transaction in the hospital example was run continually for 1 hour.

Fig. 12 gives the overall execution times for both the original
system and the modified system. For the modified system, it also
shows the number of stages for each transaction and the average
time spent in dynamic checks for resolving potential stagepoints.
The comment transaction in our experiments has one more stage
than as described in Fig. 10, because in all transactions, there is
an initial stage performed to obtain the principals involved in the
application.

By running the nodes on a single machine and using in-memory
data storage, we maximize the fraction of the transaction run time
occupied by dynamic checks. Nevertheless, this fraction remains
small. While the effective low latency of communication between
nodes reduces the overhead due to communication round-trips for
staging precommits, we report the number of stages, from which
this overhead can be calculated for arbitrary latency.

9. RELATED WORK

Various goals for atomic transactions, such as serializability [28]
and ACID [20], have long been proposed and widely studied, and
are still an active research topic. While much of the recent interest
has been focused on performance, we focus on security.

Information leaks in commonly used transaction scheduling pro-
tocols have been known for at least two decades [36, 6]. Kang and
Keefe [21] explore transaction processing in databases with multi-
ple security levels. Their work focuses on a simpler setting with
a global, trusted transaction manager. They assume each trans-
action has a single security level, and can only “read down” and
“write up.” Smith et al. [36] show that strong atomicity, isola-

tion, and consistency guarantees are not possible for all transac-
tions in a generalized multilevel secure database. They propose
weaker guarantees and give three different protocols that meet var-
ious weaker guarantees. Their Low-Ready-Wait 2PL protocol is
similar to SC, and provides only what the authors call ACIS™—
correctness. Specifically, “aborted operations at a higher level may
prevent all lower level operations from beginning” [36, p37]. Al-
though our implementation is conservative and would not allow
such a thing, the theory behind SC could allow a later stage with
less trustworthy participants to hold up earlier, precommitted stages
indefinitely. Duggan and Wu [16] observe that aborts in high-
security subtransactions can leak information to low-security par-
ent transactions. Their model of a single, centralized multilevel se-
cure database with strictly ordered security levels is more restrictive
than our distributed model and security lattice. Our abort channels
generalize their observation. They arrive at a different solution,
building a theory of secure nested transactions. Atluri, Jajodia,
and George [5] describe a number of known protocols requiring
weaker guarantees or a single trusted coordinator. Our work in-
stead focuses on securely serializing transactions in a fully decen-
tralized setting. Our analysis is also the first in this vein to consider
liveness: SC can guarantee deadlock freedom of transactions with
relaxed monotonicity.

In this work, we build on a body of research that uses lattice-
based information flow labels and language-based information flow
methods [12, 14, 31]. Relatively little work has studied informa-
tion flow in transactional systems. Our implementation is built on
Fabric [24, 3], a distributed programming system that controls in-
formation flow over persistent objects. The only other information-
flow-sensitive database implementation appears to be IFDB [33],
which also does not account for abort channels.

10. CONCLUSION

There is a fundamental trade-off between strong consistency guar-
antees and strong security properties in decentralized systems. We
investigate the secure scheduling of transactions, a ubiquitous build-
ing block of modern large-scale applications. Abort channels offer
a stark example of an unexplored security flaw: existing transac-
tion scheduling mechanisms can leak confidential information, or
allow unauthorized influences of trusted data. While some sets of
transactions are impossible to serialize securely, we demonstrate
the viability of secure scheduling.

We present relaxed monotonicity, a simple condition under which
secure scheduling is always possible. Our staged commit protocol
can securely schedule any set of transactions with relaxed mono-
tonicity, even in an open system. To demonstrate the practical ap-
plicability of this protocol, we adapted the Fabric compiler to check
transactional programs for conditions that allow secure scheduling.
These checks are effective: the compiler identifies an intrinsic se-
curity flaw in one program, and accepts other, secure transactions
with minimal adaptations.

This work sheds light on the fundamentals of secure transac-
tions. However, there is more work to be done to understand the
pragmatic implications. We have identified separate necessary and
sufficient conditions for secure scheduling, but there remains space



between them to explore. Ultimately, abort channels are just one in-
stance of the general problem of information leakage in distributed
systems. Similar channels may exist in other distributed settings,
and we expect it to be fruitful to explore other protocols through
the lens of information flow analysis.
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